Transport Processes and Separation Process Principles (Includes Unit Operations)

Author:   Christie J. Geankoplis
Publisher:   Pearson Education (US)
Edition:   4th edition
ISBN:  

9780131013674


Pages:   1056
Publication Date:   19 March 2003
Replaced By:   9780134181028
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $380.16 Quantity:  
Add to Cart

Share |

Transport Processes and Separation Process Principles (Includes Unit Operations)


Add your own review!

Overview

Full Product Details

Author:   Christie J. Geankoplis
Publisher:   Pearson Education (US)
Imprint:   Pearson
Edition:   4th edition
Dimensions:   Width: 18.70cm , Height: 3.90cm , Length: 24.00cm
Weight:   1.520kg
ISBN:  

9780131013674


ISBN 10:   013101367
Pages:   1056
Publication Date:   19 March 2003
Audience:   College/higher education ,  Tertiary & Higher Education
Replaced By:   9780134181028
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Preface. I. TRANSPORT PROCESSES: MOMENTUM, HEAT, AND MASS. 1. Introduction to Engineering Principles and Units. Classification of Transport Processes and Separation Processes (Unit Operations). SI System of Basic Units Used in This Text and Other Systems. Methods of Expressing Temperatures and Compositions. Gas Laws and Vapor Pressure. Conservation of Mass and Material Balances. Energy and Heat Units. Conservation of Energy and Heat Balances. Numerical Methods for Integration. 2. Principles of Momentum Transfer and Overall Balances. Introduction. Fluid Statics. General Molecular Transport Equation for Momentum, Heat, and Mass Transfer. Viscosity of Fluids. Types of Fluid Flow and Reynolds Number. Overall Mass Balance and Continuity Equation. Overall Energy Balance. Overall Momentum Balance. Shell Momentum Balance and Velocity Profile in Laminar Flow. Design Equations for Laminar and Turbulent Flow in Pipes. Compressible Flow of Gases. 3. Principles of Momentum Transfer and Applications. Flow Past Immersed Objects and Packed and Fluidized Beds. Measurement of Flow of Fluids. Pumps and Gas-Moving Equipment. Agitation and Mixing of Fluids and Power Requirements. Non-Newtonian Fluids. Differential Equations of Continuity. Differential Equations of Momentum Transfer or Motion. Use of Differential Equations of Continuity and Motion. Other Methods for Solution of Differential Equations of Motion. Boundary-Layer Flow and Turbulence. Dimensional Analysis in Momentum Transfer. 4. Principles of Steady-State Heat Transfer. Introduction and Mechanisms of Heat Transfer. Conduction Heat Transfer. Conduction Through Solids in Series. Steady-State Conduction and Shape Factors. Forced Convection Heat Transfer Inside Pipes. Heat Transfer Outside Various Geometries in Forced Convection. Natural Convection Heat Transfer. Boiling and Condensation. Heat Exchangers. Introduction to Radiation Heat Transfer. Advanced Radiation Heat-Transfer Principles. Heat Transfer of Non-Newtonian Fluids. Special Heat-Transfer Coefficients. Dimensional Analysis in Heat Transfer. Numerical Methods for Steady-State Conduction in Two Dimensions. 5. Principles of Unsteady-State Heat Transfer. Derivation of Basic Equation. Simplified Case for Systems with Negligible Internal Resistance. Unsteady-State Heat Conduction in Various Geometries. Numerical Finite-Difference Methods for Unsteady-State Conduction. Chilling and Freezing of Food and Biological Materials. Differential Equation of Energy Change. Boundary-Layer Flow and Turbulence in Heat Transfer. 6. Principles of Mass Transfer. Introduction to Mass Transfer and Diffusion. Molecular Diffusion in Gases. Molecular Diffusion in Liquids Molecular Diffusion in Biological Solutions and Gels. Molecular Diffusion in Solids. Numerical Methods for Steady-State Molecular Diffusion in Two Dimensions. 7. Principles of Unsteady-State and Convective Mass Transfer. Unsteady-State Diffusion. Convective Mass-Transfer Coefficients. Mass-Transfer Coefficients for Various Geometries. Mass Transfer to Suspensions of Small Particles. Molecular Diffusion Plus Convection and Chemical Reaction. Diffusion of Gases in Porous Solids and Capillaries. Numerical Methods for Unsteady-St

Reviews

Author Information

CHRISTIE JOHN GEANKOPLIS is a Professor of Chemical Engineering and Materials Science at the University of Minnesota. His current research interests involve transport processes, biochemical reactor engineering, mass transfer in liquid solutions, and diffusion and/or reaction in porous solids. He holds a Ph.D. in Chemical Engineering from the University of Pennsylvania.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List