|
|
|||
|
||||
OverviewThermoelectricity describes the physics of energy conversion, from heat to electric power, and from electric power to heat or cooling power in solids. The working fluid consists of the conduction electrons. Despite a long and distinguished history, recent developments in nanotechnologies have revolutionized the field. It was recognised in the 1990s that low-dimensional systems should result in materials with much better efficiencies than bulk materials, through low-dimensional effects on both charge carriers and lattice waves. This has been experimentally demonstrated in the early 2000s. This book aims to be the first monograph to comprehensively describe low-dimensional thermoelectricity in a systematic manner. Following the classic format of monographs in this area, it is written so that low-dimensional effects follow naturally from the transport equations. It is aimed at professional researchers in academia and industry, and graduate students in materials engineering, applied physics and chemistry. Full Product DetailsAuthor: Joseph P. Heremans , Gang Chen , Mildred S. Dresselhaus , Gene DresselhausPublisher: Springer London Ltd Imprint: Springer London Ltd Edition: 1st ed. 2024 ISBN: 9781846283628ISBN 10: 1846283620 Pages: 4 Publication Date: 16 August 2024 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsIntroduction and history.- Basic Transport Equations and Phenomenological Theory.- Thermoelectric Couples (to get to the concept of figure of merit).- Theory: electrons.- Theory: phonons.- Experimental study of actual systems.- Directions for future work.- Conclusions.ReviewsAuthor InformationJoseph Heremans is a fellow at Delphi Corporation’s research laboratory. Delphi is one of the leading manufacturers of automotive air conditioning, an area of application for thermoelectric cooling. Heremans has written about 15 research articles (3 in Phys. Rev. Lett.) and several review articles on thermoelectric properties of nanowires, mostly from the point of view of their electronic transport properties. Gang Chen is a Professor of Mechanical Engineering at the Massachusetts Institute of Technology, and specializes in the field of thermal conductivity of low-dimensional materials, and thermodynamics. He is the author of multiple research papers on the subject of low-dimensional thermoelectric materials, particularly from the point of view of phonon heat conduction. Mildred Dresselhaus is an Institute Professor at the Massachusetts Institute of Technology who has written several tutorial monographs, including for Springer Verlag. She has been working in the field of low-dimensional thermoelectrics since its inception. She is the author of the seminal research paper of the field, in 1993, as well as of the review articles that will constitute the core of the proposed book. Professor Brian Derby, the editor of the Engineering Materials and Processes series has acknowledged that these authors are preeminent in their field and welcomed their book proposal as a volume in his series. Tab Content 6Author Website:Countries AvailableAll regions |