|
|
|||
|
||||
OverviewThe thermal characteristics of a Hall thruster directly influence thruster and spacecraft design. High temperatures affect the magnetic coil capabilities and cause higher insulator erosion rates, influencing both thruster performance and lifetime. The Hall thruster transfers heat through both radiation and conduction, and the spacecraft must handle this additional thermal energy. An infrared camera provides a non-intrusive method to analyze the thermal characteristics of an operational Hall thruster. This thesis contains the thermal analysis of a Busek Co. Inc. 200 W Hall thruster, using a FLIR ThermaCAM SC640 infrared camera. The Space Propulsion Analysis and System Simulator Laboratory at the Air Force Institute of Technology on Wright-Patterson Air Force Base provided the location for thruster set up and operation. The infrared camera furnishes the surface temperatures for the entire thruster, and approximates the transient heating behavior during start up, steady state, and shut down. Thermocouples verify and correct the camera data. Experimentally determined emissivities characterize the materials of the thruster. In addition, a view factor analysis between the camera pixels and the alumina sprayed portion of the cathode determines the exchange of radiation between the pixels and cathode surface. This process develops a technique to map surface temperatures of complex geometries with confidence in the actual values. Accurately mapping the surface temperatures of a Hall Effect thruster will improve both thruster efficiency and lifetime, and predict the thruster's thermal load on a satellite. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant. Full Product DetailsAuthor: Air Force Institute of Technology (U , Alex M BohnertPublisher: Hutson Street Press Imprint: Hutson Street Press Dimensions: Width: 15.60cm , Height: 0.60cm , Length: 23.40cm Weight: 0.159kg ISBN: 9781025077352ISBN 10: 1025077350 Pages: 106 Publication Date: 22 May 2025 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||