The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer

Author:   Christine E. Pullar (University of Leicester, UK)
Publisher:   Taylor & Francis Inc
ISBN:  

9781439837238


Pages:   344
Publication Date:   21 March 2011
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $441.00 Quantity:  
Add to Cart

Share |

The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer


Add your own review!

Overview

Recent advances in technology have led to the unprecedented accuracy in measurements of endogenous electric fields around sites of tissue disruption. State-of-the-art molecular approaches demonstrate the role of bioelectricity in the directionality and speed of cell migration, proliferation, apoptosis, differentiation, and orientation. New information indicates that electric fields play a role in initiating and coordinating complex regenerative responses in development and wound repair and that they may also have a part in cancer progression and metastasis. Compiling current research in this rapidly expanding field, Physiology of Bioelectricity in Development, Tissue Regeneration, and Cancer highlights relevant, cutting-edge topics poised to drive the next generation of medical breakthroughs. Chapters consider methods for detecting endogenous electric field gradients and studying applied electric fields in the lab. The book addresses bioelectricity's roles in guiding cell behavior during morphogenesis and orchestrating higher order patterning. It also covers the response of stem cells to applied electric fields, which reveals bioelectricity as an exciting new player in tissue engineering and regenerative medicine. This book provides an in-depth exploration of how electric signals control corneal wound repair and skin re-epithelialization, angiogenesis, and inflammation. It also delves into the bioelectric responses of cells derived from the musculoskeletal system, bioelectrical guidance of neurons, and the beneficial application of voltage gradients to promote regeneration in the spinal cord. It concludes with a discussion of bioelectricity and cancer progression and the potential for novel cancer biomarkers, new methods for early detection, and bioelectricity-based therapies to target both the tumor and metastatic cancer cells. This multidisciplinary compilation will benefit biologists, biochemists, biomedical scientists, engineers, dermatologists, and clinicians, or anyone else interested in development, regeneration, cancer, and tissue engineering. It can also serve as an ideal textbook for students in biology, medicine, medical physiology, biophysics, and biomedical engineering.

Full Product Details

Author:   Christine E. Pullar (University of Leicester, UK)
Publisher:   Taylor & Francis Inc
Imprint:   CRC Press Inc
Dimensions:   Width: 15.20cm , Height: 2.00cm , Length: 22.90cm
Weight:   0.612kg
ISBN:  

9781439837238


ISBN 10:   1439837236
Pages:   344
Publication Date:   21 March 2011
Audience:   Professional and scholarly ,  College/higher education ,  Professional & Vocational ,  Tertiary & Higher Education
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Measuring Endogenous Electric Fields. Investigation Systems to Study the Biological Effects of Weak Physiological Electric Fields. Endogenous Bioelectric Signals as Morphogenetic Controls of Development, Regeneration, and Neoplasm. Stem Cell Physiological Responses to Noninvasive Electrical Stimulation. Electrical Signals Control Corneal Epithelial Cell Physiology and Wound Repair. Physiological Electric Fields Can Direct Keratinocyte Migration and Promote Healing in Chronic Wounds. Electrical Control of Angiogenesis. Inflammatory Cell Electrotaxis. Effects of DC Electric Fields on Migration of Cells of the Musculoskeletal System. Neuronal Growth Cone Guidance by Physiological DC Electric Fields. Can Applied Voltages Be Used to Produce Spinal Cord Regeneration and Recovery in Humans? Bioelectricty of Cancer: Voltage-Gated Ion Channels and Direct-Current Electric Fields.

Reviews

Author Information

Christine E. Pullar is a lecturer at the University of Leicester in the UK. She received her Ph.D. in immune cell signal transduction from the University of Sheffield, UK. The Wellcome Trust, the Medical Research Council, and the British Skin Foundation currently fund her lab. Her work has a strong translational flair, including projects that aim to promote healing in chronic wounds and reduce wound scarring, and she hold several patents in this area. She has delivered invited lectures at more than 20 international meetings and is active in mentoring young scientists within the research community.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List