The Physics & Technology of Radiation Therapy

Author:   Patrick N. McDermott ,  Colin G. Orton
Publisher:   Medical Physics Publishing Corporation
ISBN:  

9781930524446


Pages:   856
Publication Date:   30 March 2010
Format:   Paperback
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $237.60 Quantity:  
Add to Cart

Share |

The Physics & Technology of Radiation Therapy


Add your own review!

Overview

"This book is the outgrowth of a course taught to residents in radiation oncology at Wayne State University, at the suggestion of residents who saw a need for a technically-accurate text set at the correct mathematical level. It is intended to be a book to learn from, not a comprehensive compendium. It is written for members of the radiation therapy community such as radiation therapy technologists, dosimetrists, and radiation oncologists who may have taken college physics several years previously but still need to know the basic physics of radiation therapy. For graduate students in medical physics, it will serve as a review of the ""basics"". The material is written to be relevant to clinical practice, without covering specifics in treatment planning, and also with a close eye on board certification requirements."

Full Product Details

Author:   Patrick N. McDermott ,  Colin G. Orton
Publisher:   Medical Physics Publishing Corporation
Imprint:   Medical Physics Publishing Corporation
Dimensions:   Width: 17.80cm , Height: 3.60cm , Length: 25.40cm
Weight:   0.885kg
ISBN:  

9781930524446


ISBN 10:   1930524447
Pages:   856
Publication Date:   30 March 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

* Preface * Acknowledgments * Chapter 1 Mathematics Review* 1.1 Exponents* 1.1.1 Multiplication* 1.1.2 Division* 1.1.3 An Exponential Raised to a Power* 1.1.4 A Product Raised to a Power* 1.1.5 Base e* 1.2 Logarithms* 1.3 Geometry* 1.4 Trigonometry Problems * Chapter 2 Review of Basic Physics* 2.1 Units for Physical Quantities* 2.2 Mechanics* 2.2.1 Newton's Second Law* 2.2.2 Work* 2.2.3 Work Energy Theorem and Energy Conservation* 2.2.4 Power* 2.3 Electricity and Magnetism* 2.3.1 Charge and the Coulomb Force* 2.3.2 Electric Fields* 2.3.3 Current* 2.3.4 Potential Difference* 2.3.5 The Electron Volt - A Unit of Energy Not Voltage* 2.3.6 Magnetism* 2.4 Electromagnetic Spectrum* 2.5 The Special Theory of Relativity* 2.6 Review of Atomic Structure Problems* Bibliography * Chapter 3 Atomic Nuclei and Radioactivity* 3.1 Basic Properties of Nuclei* 3.2 Four Fundamental Forces of Nature* 3.3 Nuclear Binding Energy: Mass Defect* 3.4 Stability of Nuclei* 3.5 Antimatter* 3.6 Properties of Nuclei and Particles* 3.7 Radioactivity* 3.8 Mathematics of Radioactive Decay* 3.9 Activity* 3.10 Half-Life* 3.11 Mean-Life* 3.12 Modes of Decay* 3.12.1 Alpha Decay* 3.12.2 Electromagnetic Decay* 3.12.3 Beta Decay* 3.13 Decay Diagrams* 3.14 Radioactive Equilibrium* 3.14.1 Secular Equilibrium* 3.14.2 Transient Equilibrium* 3.15 Production of Radionuclides* 3.15.1 Fission Byproducts* 3.15.2 Neutron Activation* 3.15.3 Particle Accelerators* Chapter Summary* Problems* Bibliography * Chapter 4 The Production of X-Rays I: Technology* 4.1 Introduction* 4.2 X-Ray Tubes* 4.3 Therapy X-Ray Tubes* 4.4 X-Ray Film and Screens* 4.5 X-Ray Generator* Chapter Summary* Problems* Bibliography * Chapter 5 X-Ray Production II: Basic Physics and Properties of Resulting X-Rays* 5.1 Production of X-Rays: Microscopic Physics* 5.1.1 Characteristic X-Rays* 5.1.2 Bremsstrahlung Emission* 5.2 X-Ray Spectrum* 5.3 Efficiency of X-Ray Production* 5.4 Directional Dependence of Bremsstrahlung Emission* 5.5 X-Ray Attenuation* 5.5.1 Beam Divergence and the Inverse-Square Effect* 5.5.2 Attenuation by Matter* 5.6 Half-Value Layer (HVL)* 5.7 Mass Attenuation Coefficient Appendix: Rontgen and the Discovery of X-Rays* Chapter Summary* Problems* Bibliography * Chapter 6 The Interaction of Radiation with Matter* 6.1 Photon Interactions With Matter* 6.1.1 Coherent Scattering* 6.1.2 Photoelectric Effect* 6.1.3 Compton Scattering* 6.1.4 Pair Production* 6.1.5 Photonuclear Reactions* 6.1.6 Total Mass Absorption Coefficient* 6.2 Interaction of Charged Particles with Matter* 6.2.1 Electron Interactions with Matter* 6.2.2 Stopping Power* 6.2.3 Range* 6.2.4 Mean Energy To Produce An Ion Pair* 6.2.5 Heavy Charged Particle Interactions and the Bragg Peak* 6.3 Neutron Interactions with Matter* Chapter Summary* Problems* Bibliography * Chapter 7 Radiation Measurement Quantities* 7.1 Introduction* 7.2 Exposure* 7.3 Charged Particle Equilibrium* 7.4 Some Important Radiation Dosimetry Quantities* 7.5 Dose Buildup and Skin Sparing* 7.6 Absorbed Dose to Air* 7.7 Dose in a Medium Calculated from Exposure* 7.8 Dose In Free Space* 7.9 An Example of Photon Interactions: History of a 5.0 MeV Photon in Water* 7.10 Monte Carlo Calculations* 7.11 Microscopic Biological Damage* Chapter Summary* Problems* Bibliography * Chapter 8 Radiation Detection and Measurement* 8.1 Introduction* 8.2 Phantoms* 8.3 Gas Ionization Detectors* 8.3.1 Ionization Chambers* 8.3.2 Survey Meter Ion Chambers* 8.3.3 Charge Collection and Measurement* 8.3.4 Proportional Counters* 8.3.5 Geiger-Muller (GM) Counter* 8.3.6 Summary of Gas Ionization Detectors* 8.4 Solid-State Detectors* 8.4.1 Thermoluminescent Dosimeters* 8.4.2 Film* 8.4.3 Diodes* 8.4.4 MOSFETS* 8.4.5 Polymer Gels* 8.5 Liquid Dosimeters* 8.5.1 Calorimeters* 8.5.2 Chemical Dosimetry* Chapter Summary* Problems* Bibliography * Chapter 9 External Beam Radiation Therapy Units* 9.1 Introduction* 9.2 Medical Electron Linear Accelerators* 9.2.1 Source of Microwave Power* 9.2.2 The Treatment Head* 9.2.3 Linear Accelerator Auxiliary Subsystems* 9.2.4 Interlocks and Safety Systems* 9.2.5 Patient Support Assembly* 9.3 Cobalt-60 Teletherapy Units* 9.4 Cyclotrons* 9.5 Photon Beam Characteristics* Chapter Summary* Problems* Bibliography * Chapter 10 Central Axis Dose Distribution* 10.1 Introduction* 10.2 Percent Depth Dose (PDD)* 10.3 Source of Microwave Power* 10.4 Tissue-Air Ratio (TAR)* 10.5 Backscatter and Peak Scatter Factors* 10.6 Tissue-Phantom Ratio (TPR) and Tissue-Maximum Ratio (TMR)* 10.7 Equivalent Squares* 10.8 Linear Interpolation* Chapter Summary* Problems* Bibliography * Chapter 11 Calibration of Megavoltage Photon Beams* 11.1 Normalization Conditions* 11.1.1 Normalization Conditions for Co-60* 11.1.2 Normalization Conditions for Linear Accelerators* 11.2 Steps in Beam Calibration* 11.3 Ion Chamber Calibration* 11.4 Beam Quality* 11.5 The Task Group 51 Dose Equation* 11.6 Calibration Conditions* 11.7 An Example of TG-51 Calculations* 11.8 Constancy Checks of Beam Calibration* Chapter Summary* Problems* Bibliography * Chapter 12 Calculation of Monitor Unit/Timer Setting for Open Fields* 12.1 Introduction* 12.2 Normalization Conditions* 12.3 Head Scatter and Phantom Scatter* 12.4 Dose Rate Calculations* 12.4.1 Percent Depth Dose Calculations (SSD = SAD)* 12.4.2 Isocentric Calculations* 12.4.3 Dose Rate at an Arbitrary Distance* 12.4.4 The Equivalence of PDD and TMR Calculations* Chapter Summary* Problems* Bibliography * Chapter 13 Shaped Fields* 13.1 Introduction* 13.2 Field Shaping Methods* 13.2.1 Asymmetric Jaws* 13.2.2 Blocks* 13.2.3 Multileaf Collimators* 13.3 Dose Rate Calculations for Shaped Fields: Symmetric Jaws, Central Axis* 13.3.1 Approximate Methods for Estimating the Equivalent Square of a Blocked Field* 13.3.2 Clarkson Integration* 13.4 Dose Rate Calculations for Shaped Fields at Points Away from the Central Axis* 13.5 Dose Rate Calculations with Asymmetric Jaws* 13.6 Dose Under a Blocked Region* Chapter Summary* Problems* Bibliography * Chapter 14 Dose Distributions in Two and Three Dimensions* 14.1 Isodose Charts* 14.2 Skin Contour* 14.2.1 Isodose Shift Method* 14.2.2 Effective SSD Method* 14.2.3 Ratio of TAR (rTAR) Method* 14.3 Parallel-Opposed Fields* 14.3.1 Adding Isodose Distributions* 14.3.2 Beam Weighting* 14.4 Wedges* 14.4.1 Wedged Fields* 14.4.2 Wedge Transmission Factor* 14.4.3 Dose Rate Calculations with a Wedge Present* 14.5 Multiple Beams* 14.6 Dose-Volume Specification and Reporting* 14.7 Evaluation of Patient Dose Distributions* 14.8 Arc or Rotation Therapy* 14.9 Surface Dose* 14.10 Bolus* 14.11 Beam Spoilers* 14.12 Tissue Compensators* 14.13 Tissue Inhomogeneities* 14.14 Field Matching* 14.15 Patient Positioning and Immobilization Devices* Chapter Summary* Problems* Bibliography * Chapter 15 Electron Beam Dosimetry* 15.1 Introduction* 15.2 Electron Applicators* 15.3 Field Shaping* 15.4 Dose Rate Calculations for Electron Beams* 15.5 Internal Blocking* 15.6 Isodose Curves* 15.7 Inhomogeneities* 15.8 Field Matching* Chapter Summary* Problems* Bibliography * Chapter 16 Brachytherapy* 16.1 Introduction* 16.2 Review of Radioactivity* 16.3 Radioactive Sources* 16.4 Brachytherapy Applicators* 16.5 Source Strength and Exposure Rate Constant* 16.6 Dose Rate Calculations from Exposure Rate* 16.7 Specification of Source Strength* 16.8 Task Group 43 Dosimetry* 16.9 Accumulated Dose from Temporary and Permanent Implants* 16.10 Systems of Implant Dosimetry* 16.10.1 A Point Source* 16.10.2 A Linear Array* 16.10.3 Planar and Volume Implants* 16.11 Intracavitary Treatment of Cervical Cancer* 16.12 Along and Away Tables* 16.13 Localization of Sources* 16.14 High Dose Rate Remote Afterloaders* Chapter Summary* Problems* Bibliography * Chapter 17 Radiation Protection* 17.1 Dosimetric Quantities Used for Radiation Protection* 17.2 Exposure of Individuals to Radiation* 17.3 Biological Effects of Radiation* 17.3.1 Carcinogenesis* 17.3.2 Risk to Fetus/Embryo* 17.3.3 Genetic Effects* 17.4 Radiation Protection Principles* 17.5 NRC Regulations* 17.5.1 Annual Dose Limits* 17.5.2 Medical License and General Requirements* 17.5.3 Written Directives and Medical Events* 17.5.4 Examples of Events Reported to the NRC* 17.5.5 Radiation Protection for Brachytherapy Procedures* 17.5.6 NRC Safety Precautions for Therapy Units* 17.6 Personnel Monitoring* 17.7 Shipment and Receipt of Radioactive Packages* 17.7.1 Package Labels* 17.7.2 Receipt of Radioactive Packages (NRC Regulations)* 17.8 Shielding Design for Linear Accelerators* 17.8.1 Primary Barriers* 17.8.2 Secondary Barriers* 17.8.3 Neutrons* 17.8.4 The Entryway* 17.8.5 Radiation Protection Survey of a Linear Accelerator* Chapter Summary* Problems* Bibliography * Chapter 18 Radiation Protection* 18.1 Introduction* 18.2 Equipment Quality Assurance* 18.2.1 Linear Accelerators* 18.2.2 NRC Regulations Pertaining to QA* 18.2.3 Dosimetry Instrumentation* 18.3 Patient Quality Assurance* 18.3.1 Physics Chart Checks* 18.3.2 Weekly Physics Chart Checks* 18.3.3 Portal Imaging* 18.3.4 In Vivo Dosimetry* 18.4 Starting New Treatment Programs* 18.5 Mold Room Safety* 18.6 Patient Safety* 18.7 Radiation Therapy Accidents* 18.7.1 A Linear Accelerator Calibration Error* 18.7.2 An HDR Accident* 18.7.3 Malfunction 54* 18.7.4 Co-60 Overdose* Chapter Summary* Problem* Bibliography * Chapter 19 Imaging in Radiation Therapy* 19.1 Introduction* 19.2 Digital Images* 19.3 Conventional Simulators* 19.4 Computed Tomography* 19.4.1 Development of CT Scanners* 19.4.2 CT Image Reconstruction* 19.4.3 CT Numbers and Hounsfield Numbers* 19.4.4 Digitally Reconstructed Radiographs* 19.4.5 Virtual Simulation* 19.4.6 4D CT* 19.5 Magnetic Resonance Imaging* 19.6 Image Fusion/Registration* 19.7 Ultrasound Imaging* 19.8 Functional/Metabolic Imaging* 19.9 Portal Imaging* 19.9.1 Port Films* 19.9.2 Electronic Portal Imaging Devices* 19.10 Image-Guided Radiation Therapy* Chapter Summary* Problems* Bibliography * Chapter 20 Special Modalities in Radiation Therapy* 20.1 Introduction* 20.2 Intensity Modulation in Radiation Therapy* 20.2.1 IMRT Delivery Techniques* 20.2.2 Inverse Treatment Planning* 20.2.3 Inverse Planning Issues* 20.2.4 Case Study: Prostate Cancer* 20.2.5 Aperture-Based Optimization* 20.2.6 Physics Plan Validation* 20.2.7 Whole-Body Dose and Shielding* 20.3 Stereotactic Radiosurgery* 20.3.1 Introduction* 20.3.2 Linac-Based Radiosurgery* 20.3.3 Gamma Knife* 20.3.4 Imaging* 20.3.5 Treatment Planning* 20.3.6 Dosimetry* 20.3.7 Quality Assurance* 20.4 Proton Radiotherapy* 20.4.1 Introduction* 20.4.2 Potential Advantages of Protons* 20.4.3 Proton Therapy Accelerators* 20.4.4 Production and Selection of Different Energy Beams* 20.4.5 Lateral Beam Spreading and Field Shaping with Protons* 20.4.6 Beam-Delivery/Transport* 20.4.7 Dose Calculations and Treatment Planning for Proton Therapy* 20.4.8 Dose Distributions* 20.4.9 Calibration of Proton Beams and Routine Quality Assurance* 20.4.10 Future Developments* Chapter Summary* Problems* Bibliography * Appendix A - Board Certification Exams in Radiation Therapy* Appendix B - Dosimetry Data* Appendix C - MEVALAC Beam Data* Appendix D - Answers to Selected Problems

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List