The Eukaryote Genome in Development and Evolution

Author:   John Bernard ,  G. Miklos
Publisher:   Kluwer Academic Publishers Group
Edition:   1988 ed.
ISBN:  

9780045750337


Pages:   416
Publication Date:   26 November 1987
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $147.84 Quantity:  
Add to Cart

Share |

The Eukaryote Genome in Development and Evolution


Add your own review!

Overview

'The mind unlearns with difficulty what has long been impressed upon it. ' Seneca Reductionism, is, without question, the most successful analytical approach available to the experimental scientist. With the advent of techniques for cloning and sequencing DNA, and the development of a variety of molecular probes for localizing macromolecules in cells and tissues, the biologist now has available the most powerful reductionist tools ever invented. The application of these new technologies has led to a veritable explosion of facts regarding the types and organization of nucleotide sequences present in the genomes of eukaryotes. These data offer a level of precision and predictability which is unparalleled in biology. Recombinant DNA techniques were initially developed to gather information about the structure and organization of the DNA sequences within a genome. The power and potential of these techniques, however, extend far beyond simple data collection of this kind. In an attempt to use the new technology as a basis for analyzing development and evolution, attention was first focused on the topic of gene regulation, an approach that had proven so successful in prokaryotes. It is now clear that this has not been an adequate approach. Lewin (1984) has quoted Brenner as stating 'at the beginning it was said that the answer to the understanding of development was going to come from a knowledge of the molecular mechanisms of gene control. I doubt whether anyone believes this any more.

Full Product Details

Author:   John Bernard ,  G. Miklos
Publisher:   Kluwer Academic Publishers Group
Imprint:   Kluwer Academic Publishers
Edition:   1988 ed.
Dimensions:   Width: 15.50cm , Height: 2.30cm , Length: 23.50cm
Weight:   0.657kg
ISBN:  

9780045750337


ISBN 10:   0045750335
Pages:   416
Publication Date:   26 November 1987
Audience:   College/higher education ,  Tertiary & Higher Education
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1 General Molecular Organization of Genomes.- 1.1 Dissecting genomes.- 1.1.1 Microdissection and microcloning.- 1.1.2 Chromosome walking and jumping.- 1.1.3 Transposon mutagenesis and transformation.- 1.1.4 Synthetic DNA probes.- 1.1.4.1 From protein to gene using monoclonal antibodies.- 1.1.4.2 From gene to protein.- 1.2 DNA components of genomes.- 1.2.1 Non-functional DNA.- 1.2.2 Conserved DNA elements.- 1.2.3 Genomic flux.- 1.2.3.1 Transposition.- 1.2.3.2 DNA replication quirks.- 1.2.3.3 Unequal exchange.- 1.2.3.4 Conversion.- 1.2.3.5 Sequence amplification.- 2 Developmental Activities of Genomes.- 2.1 From egg to adult.- 2.2 The genetic control of development in Drosophila melanogaster.- 2.2.1 Embryonic development.- 2.2.2 Pupal development.- 2.2.3 Genetic control of spatial organization in the Drosophila melanogaster embryo.- 2.2.3.1 The antero-postero gradient.- 2.2.3.2 The dorso-ventral gradient.- 2.2.3.3 Body segmentation.- 2.2.3.4 Homeotic genes.- 2.2.4 Sexual development.- 2.2.5 Neurogenesis.- 2.2.6 General conclusions.- 2.3 General principles of development.- 2.3.1 Polarity.- 2.3.2 Cell lineages.- 2.4 Genome alterations during development.- 2.4.1 Nucleotide sequence alterations.- 2.4.1.1 The transposable mating type loci of yeast.- 2.4.1.2 Immunoglobulin class switching.- 2.4.2 Presomatic diminution.- 2.4.3 Macronuclear development in unicellular ciliates.- 2.4.4 Antigenic switching in trypanosomes.- 2.4.5 The molecular bases of genomic alterations.- 3 Coding Capacities of Genomes.- 3.1 Gene regulation in eukaryotes.- 3.1.1 Transcriptional controls.- 3.1.1.1 Polymerase II systems.- 3.1.1.2 Polymerase I systems.- 3.1.1.3 Polymerase III systems.- 3.1.1.4 DNA methylation and gene activity.- 3.1.2 Post-transcriptional controls.- 3.2 Drosophila genomes.- 3.2.1 The general molecular organization of Drosophila genomes.- 3.2.2 Heterochromatic DNA.- 3.2.2.1 Functional studies.- 3.2.2.2 Distribution of highly repetitive sequences within the heterochromatin.- 3.2.2.3 Satellite DNA binding proteins.- 3.2.3 Euchromatic DNA.- 3.3 Comparative genome organization.- 3.3.1 Size variation between genomes.- 3.3.1.1 Chordates.- 3.3.1.2 Insects.- 3.3.1.3 Plethodontid salamanders.- 3.3.2 Interspersion pattern differences.- 3.3.3 `Short' dispersed repetitive sequences.- 3.3.4 Message complexities in eukaryotes.- 3.3.4.1 Ciliate protozoans.- 3.3.4.2 Fungi.- 3.3.4.3 The sea urchin, Strongylocentrotus purpuratus page.- 3.3.4.4 Vertebrates.- 3.3.4.5 Developmental capacities of eukaryote genomes.- 3.3.5 Differences in heterochromatin content.- 3.3.6 Differences in coding DNA.- 3.3.6.1 Multigene families.- 3.3.6.2 Structural gene systems.- 3.3.6.3 Genome structure and function.- 3.4 Gene dosage relationships.- 3.4.1 Compensation and magnification.- 3.4.2 Selective gene amplification.- 3.4.2.1 The chorion genes of Drosophila melanogaster.- 3.4.2.2 The DNA puffs of Rhynchosciara americana.- 3.4.2.3 rDNA amplification.- 3.4.2.4 Somatic endoploidy.- 3.4.3 Dosage compensation.- 3.4.3.1 Female X-inactivation.- 3.4.3.2 Male X-compensation.- 3.4.4 Default transcription.- 3.4.5 Genetic balance and development.- 3.5 The developmental dilemma.- 4 Genome Change and Evolutionary Change.- 4.1 The basis of evolutionary change.- 4.2 Stability and change in the genome.- 4.2.1 The spread and fixation of genome change.- 4.2.1.1 Natural selection.- 4.2.1.2 Neutral drift.- 4.2.1.3 Molecular drive.- 4.2.2 Genome turnover.- 4.3 Nucleotype and genotype.- 4.3.1 Genome size and cell size.- 4.3.2 Genome size and metabolic rate.- 4.3.3 Genome size and division cycle time.- 4.3.4 Genome size and developmental time.- 4.4 Genome change and speciation.- 4.4.1 Species differences in mammals.- 4.4.1.1 Muntjacs.- 4.4.1.2 Equids.- 4.4.1.3 Mice.- 4.4.1.4 Rats.- 4.4.2 Structural changes in the Drosophila genome.- 4.4.3 Speciation and morphological change.- 4.4.4 Hybrid dysgenesis in Drosophila melanogaster.- 4.5 Changes in genome size.- 4.5.1 Modes of change.- 4.5.1.1 Polyploidy.- 4.5.1.2 Duplication.- 4.5.1.3 Amplification.- 4.5.2 Genome size, specialization and speciation.- 4.5.3 Supernumerary chromatin.- 4.6 Summary statement.- 5 The Unsolved Problem - The Origin of Morphological Novelty.- 5.1 Timing adjustments.- 5.2 Binary switch mechanisms.- 5.3 Cell interactions.- 5.4 Cell position.- 5.5 The evolutionary dilemma.- 6 Coda.- 6.1 Facts and conclusions.- 6.2 Future prospects.- 6.3 Final statement.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List