The Complete Guide to SCION: From Design Principles to Formal Verification

Author:   Laurent Chuat ,  Markus Legner ,  David Basin ,  David Hausheer
Publisher:   Springer International Publishing AG
Edition:   1st ed. 2022
ISBN:  

9783031052873


Pages:   656
Publication Date:   17 May 2022
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $284.60 Quantity:  
Add to Cart

Share |

The Complete Guide to SCION: From Design Principles to Formal Verification


Add your own review!

Overview

When the SCION project started in 2009, the goal was to create an architecture offering high availability and security for basic point-to-point communication. In the five years since the publication of SCION: A Secure Internet Architecture, this next-generation Internet architecture has evolved in terms of both design and deployment. On the one hand, there has been development of exciting new concepts and systems, including a new global time-synchronization system, an inter-domain approach for bandwidth reservations called COLIBRI, and Green Networking, which allows combating global climate change on three fronts. On the other hand, SCION is now also in production use by the Swiss financial ecosystem, and enables participants such as the Swiss National Bank, the Swiss provider of clearing services (SIX), and all Swiss financial institutes to communicate securely and reliably with each other via the Secure Swiss Finance Network. This unique guidebook provides an updated description of SCION's main components, covering new research topics and the most recent deployments. In particular, it presents in-depth discussion of formal verification efforts. Importantly, it offers a comprehensive, thorough description of the current SCION system: Describes the principles that guided SCION's design as a secure and robust Internet architecture Provides a comprehensive description of the next evolution in the way data finds its way through the Internet Explains how SCION can contribute to reducing carbon emissions, by introducing SCION Green Networking Demonstrates how SCION not only functions in academic settings but also works in production deployments Discusses additional use cases for driving SCION's adoption Presents the approaches for formal verification of protocols and code  Illustrated with many colorful figures, pictures, and diagrams, allowing easy access to the concepts and use cases  Assembled by a team with extensive experience in the fields of computer networks and security, this text/reference is suitable for researchers, practitioners, and graduate students interested in network security. Also, readers with limited background in computer networking but with a desire to know more about SCION will benefit from an overview of relevant chapters in the beginning of the book.

Full Product Details

Author:   Laurent Chuat ,  Markus Legner ,  David Basin ,  David Hausheer
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   1st ed. 2022
Weight:   1.178kg
ISBN:  

9783031052873


ISBN 10:   3031052870
Pages:   656
Publication Date:   17 May 2022
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Foreword by Joël Mesot xi Foreword by Fritz Steinmann xiii Preface xv How to Read This Book xvii Acknowledgments xix 1 Introduction 1 1.1 Today’s Internet . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Goals for a Secure Internet Architecture . . . . . . . . . . . 9 I SCION Core Components 15 2 Overview 17 2.1 Infrastructure Components . . . . . . . . . . . . . . . . . . 20 2.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Data Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 ISD and AS Numbering . . . . . . . . . . . . . . . . . . . 31 3 Authentication 35 3.1 The Control-Plane PKI (CP-PKI) . . . . . . . . . . . . . . 36 3.2 DRKey: Dynamically Recreatable Keys . . . . . . . . . . . 52 3.3 SCION Packet Authenticator Option . . . . . . . . . . . . . 61 4 Control Plane 65 4.1 Path-Segment Construction Beacons (PCBs) . . . . . . . . 66 4.2 Path Exploration (Beaconing) . . . . . . . . . . . . . . . . 69 4.3 Path-Segment Registration . . . . . . . . . . . . . . . . . . 71 4.4 PCB and Path-Segment Selection . . . . . . . . . . . . . . 73 4.5 Path Lookup . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 Service Discovery . . . . . . . . . . . . . . . . . . . . . . 87 4.7 SCION Control Message Protocol (SCMP) . . . . . . . . . 89 5 Data Plane 93 5.1 Inter- and Intra-domain Forwarding . . . . . . . . . . . . . 94 5.2 Packet Format . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3 Path Authorization . . . . . . . . . . . . . . . . . . . . . . 96 5.4 The SCION Path Type . . . . . . . . . . . . . . . . . . . . 101 5.5 Path Construction (Segment Combinations) . . . . . . . . . 104 5.6 Packet Initialization and Forwarding . . . . . . . . . . . . . 115 5.7 Path Revocation . . . . . . . . . . . . . . . . . . . . . . . 120 5.8 Data-Plane Extensions . . . . . . . . . . . . . . . . . . . . 124 II Analysis of the Core Components 127 6 Functional Properties and Scalability 129 6.1 Dependency Analysis . . . . . . . . . . . . . . . . . . . . . 130 6.2 SCION Path Policy . . . . . . . . . . . . . . . . . . . . . . 135 6.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . 148 6.4 Beaconing Overhead and Path Quality . . . . . . . . . . . . 150 7 Security Analysis 157 7.1 Security Goals and Properties . . . . . . . . . . . . . . . . 158 7.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.4 Control-Plane Security . . . . . . . . . . . . . . . . . . . . 165 7.5 Path Authorization . . . . . . . . . . . . . . . . . . . . . . 170 7.6 Data-Plane Security . . . . . . . . . . . . . . . . . . . . . 172 7.7 Source Authentication . . . . . . . . . . . . . . . . . . . . 174 7.8 Absence of Kill Switches . . . . . . . . . . . . . . . . . . . 176 7.9 Other Security Properties . . . . . . . . . . . . . . . . . . . 179 7.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 III Achieving Global Availability Guarantees 183 8 Extensions for the Control Plane 185 8.1 Hidden Paths . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.2 Time Synchronization . . . . . . . . . . . . . . . . . . . . 190 8.3 Path Metadata in PCBs . . . . . . . . . . . . . . . . . . . . 197 9 Monitoring and Filtering 203 9.1 Replay Suppression . . . . . . . . . . . . . . . . . . . . . . 204 9.2 High-Speed Traffic Filtering with LightningFilter . . . . . . 207 9.3 Probabilistic Traffic Monitoring with LOFT . . . . . . . . . 217 10 Extensions for the Data Plane 227 10.1 Source Authentication and Path Validation with EPIC . . . . 228 10.2 Bandwidth Reservations with COLIBRI . . . . . . . . . . . 237 11 Availability Guarantees 267 11.1 Availability Goals and Threat Landscape . . . . . . . . . . 268 11.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 11.3 Defense Systems . . . . . . . . . . . . . . . . . . . . . . . 271 11.4 Traffic Prioritization . . . . . . . . . . . . . . . . . . . . . 278 11.5 Protected DRKey Bootstrapping . . . . . . . . . . . . . . . 283 11.6 Protection of Control-Plane Services . . . . . . . . . . . . . 288 11.7 AS Certification . . . . . . . . . . . . . . . . . . . . . . . 294 11.8 Security Discussion . . . . . . . . . . . . . . . . . . . . . . 297 IV SCION in the Real World 301 12 Host Structure 303 12.1 Host Components . . . . . . . . . . . . . . . . . . . . . . . 303 12.2 Future Approaches . . . . . . . . . . . . . . . . . . . . . . 307 13 Deployment and Operation 317 13.1 Global Deployment . . . . . . . . . . . . . . . . . . . . . . 319 13.2 End-Host Deployment and Bootstrapping . . . . . . . . . . 327 13.3 The SCION–IP Gateway (SIG) . . . . . . . . . . . . . . . . 332 13.4 SIG Coordination Systems . . . . . . . . . . . . . . . . . . 336 13.5 SCION as a Secure Backbone AS (SBAS) . . . . . . . . . . 345 13.6 Example: Life of a SCION Data Packet . . . . . . . . . . . 354 14 SCIONLAB Research Testbed 361 14.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 362 14.2 Research Projects . . . . . . . . . . . . . . . . . . . . . . . 366 14.3 Comparison to Related Systems . . . . . . . . . . . . . . . 368 15 Use Cases and Applications 371 15.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 15.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 382 15.3 Case Study: Secure Swiss Finance Network (SSFN) . . . . 385 15.4 Case Study: SCI-ED, a SCION-Based Research Network . . 389 16 Green Networking with SCION 393 16.1 Direct Power Savings with SCION . . . . . . . . . . . . . . 394 16.2 SCION Enables Green Inter-domain Routing . . . . . . . . 399 16.3 Incentives for ISPs to Use Renewable Energy Resources . . 404 17 Cryptography 407 17.1 How Cryptography Is Used in SCION . . . . . . . . . . . . 408 17.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . 409 17.3 Local Cryptographic Primitives . . . . . . . . . . . . . . . 410 17.4 Global Cryptographic Primitives . . . . . . . . . . . . . . . 412 17.5 Post-Quantum Cryptography . . . . . . . . . . . . . . . . . 415 V Additional Security Systems 417 18 F-PKI: A Flexible End-Entity Public-Key Infrastructure 419 18.1 Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . 421 18.2 Overview of F-PKI . . . . . . . . . . . . . . . . . . . . . . 423 18.3 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 18.4 Verifiable Data Structures . . . . . . . . . . . . . . . . . . 426 18.5 Selection of Map Servers . . . . . . . . . . . . . . . . . . . 428 18.6 Proof Delivery . . . . . . . . . . . . . . . . . . . . . . . . 428 18.7 Certificate Validation . . . . . . . . . . . . . . . . . . . . . 430 19 RHINE: Secure and Reliable Internet Naming Service 431 19.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 433 19.2 Why a Fresh Start? . . . . . . . . . . . . . . . . . . . . . . 437 19.3 Overview of RHINE . . . . . . . . . . . . . . . . . . . . . 440 19.4 Authentication . . . . . . . . . . . . . . . . . . . . . . . . 444 19.5 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . 452 19.6 Secure Name Resolution . . . . . . . . . . . . . . . . . . . 455 19.7 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 457 20 PILA: Pervasive Internet-Wide Low-Latency Authentication 461 20.1 Trust-Amplification Model . . . . . . . . . . . . . . . . . . 463 20.2 Overview of PILA . . . . . . . . . . . . . . . . . . . . . . 464 20.3 ASes as Opportunistically Trusted Entities . . . . . . . . . 464 20.4 Authentication Based on End-Host Addresses . . . . . . . . 465 20.5 Certificate Service . . . . . . . . . . . . . . . . . . . . . . 466 20.6 NAT Devices . . . . . . . . . . . . . . . . . . . . . . . . . 467 20.7 Session Resumption . . . . . . . . . . . . . . . . . . . . . 467 20.8 Downgrade Prevention . . . . . . . . . . . . . . . . . . . . 468 VI Formal Verification 471 21 Motivation for Formal Verification 473 21.1 Local and Global Properties . . . . . . . . . . . . . . . . . 474 21.2 Quantitative Properties . . . . . . . . . . . . . . . . . . . . 475 21.3 Adversarial Environments . . . . . . . . . . . . . . . . . . 475 21.4 Design-Level and Code-Level Verification . . . . . . . . . . 476 22 Design-Level Verification 477 22.1 Overview of Design-Level Verification . . . . . . . . . . . 478 22.2 Background on Event Systems and Refinement . . . . . . . 482 22.3 Example: Authentication Protocol . . . . . . . . . . . . . . 488 22.4 Verification of the SCION Data Plane . . . . . . . . . . . . 494 22.5 Quantitative Verification of the N-Tube Algorithm . . . . . 510 23 Code-Level Verification 519 23.1 Why Code-Level Verification? . . . . . . . . . . . . . . . . 520 23.2 Introduction to Program Verification . . . . . . . . . . . . . 522 23.3 Verification of Go Programs . . . . . . . . . . . . . . . . . 533 23.4 Verification of Protocol Implementations . . . . . . . . . . 547 23.5 Secure Information Flow . . . . . . . . . . . . . . . . . . . 555 24 Current Status and Plans 563 24.1 Completed Work . . . . . . . . . . . . . . . . . . . . . . . 563 24.2 Ongoing Work . . . . . . . . . . . . . . . . . . . . . . . . 566 24.3 Future Plans and Open Challenges . . . . . . . . . . . . . . 567 VII Back Matter 573 25 Related Work 575 25.1 Future Internet Architectures . . . . . . . . . . . . . . . . . 575 25.2 Deployment of New Internet Architectures . . . . . . . . . 580 25.3 Inter-domain Multipath Routing Protocols . . . . . . . . . . 582 Bibliography 585 Glossary 641 Abbreviations 645 Index 651

Reviews

Author Information

"Laurent Chuat is a postdoctoral researcher in the Network Security Group at ETH Zurich, where most of his research focuses on authentication and public-key infrastructures. He obtained his PhD in computer science from ETH Zurich in 2020 and co-authored the book ""SCION: A Secure Internet Architecture.""Markus Legner is a senior researcher and lecturer in the Network Security Group, where he is conducting research on the design and verification of security protocols. He holds a Bachelor's degree in computer science from ETH Zurich as well as a doctorate in theoretical physics. David Basin is a professor of computer science at ETH Zurich and was head of the department from 2019 to 2020. David received his PhD in computer science from Cornell University in 1989 and his Habilitation in computer science from the University of Saarbrücken in 1996. From 1997 to 2002, he held the Chair of Software Engineering at the University of Freiburg in Germany. He is the founding director of the Zurich Information Security Center (ZISC). David Hausheer is a professor at the Faculty of Computer Science at Otto von Guericke University Magdeburg, where he leads the Networks and Distributed Systems Lab. He received his degree in electrical engineering from ETH Zurich in 2001. Since 2001, he participated in numerous European Union projects. He obtained his PhD in 2005 and was then employed as a senior researcher and lecturer in the Department of Informatics (IFI) at the University of Zurich. Samuel Hitz holds a Master's degree in computer science from ETH Zurich and is the current CTO and previous CEO of Anapaya, which he co-founded with Adrian Perrig, David Basin, and Peter Müller. He has worked on the implementation of SCION and, together with Anapaya's customers, on the real-world deployment and operation of an enterprise-oriented SCION network. Peter Müller has been a professor of computer science at ETH Zurich since 2008. Before joining ETH Zurich, he worked as an IT project manager at Deutsche Bank in Frankfurt and held a position as researcher at Microsoft Research. Peter Müller is working on programming languages, methods, and tools with the goal of enabling programmers to develop correct software. Adrian Perrig is a professor at the Department of Computer Science at ETH Zurich, where he leads the Network Security Group. He is also an adjunct professor of electrical and computer engineering at Carnegie Mellon University. From 2007 to 2012, he served as the technical director for Carnegie Mellon's CyLab. During that time, he led a research project aimed at building a next-generation Internet architecture, which was later renamed SCION."

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List