Temporal Variation of Urban Surface and Air Temperature

Author:   Xinyan Yang ,  杨芯岩
Publisher:   Open Dissertation Press
ISBN:  

9781361330050


Publication Date:   26 January 2017
Format:   Paperback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $129.36 Quantity:  
Add to Cart

Share |

Temporal Variation of Urban Surface and Air Temperature


Add your own review!

Overview

This dissertation, Temporal Variation of Urban Surface and Air Temperature by Xinyan, Yang, 杨芯岩, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The urbanization process alters the radiative, thermal, moisture and aerodynamic characteristics of a surface, which significantly affect the surface energy balance within the atmospheric boundary layer. Such modifications can lead to the so-called urban warming phenomenon, where the extent and rate of urban surface and air temperature is substantially higher than the corresponding rural region, which has caused serious concern in recent decades. However, the understanding of the causes of urban warming is incomplete, and the same applies to lack of effective mitigation strategies. Therefore, in order to have a complete understanding of the formation of urban warming, the present thesis focusses on the estimation of temporal variations of urban surface and air temperatures by using numerical simulations, analytical methods and field measurements. To better understand the mechanism(s) of urban surface temperature variation, a three-dimensional model that incorporates the energy exchange processes is first developed for a realistically complex city. In order to reduce the computational effort for the radiation heat transfer calculation, the compressed row storage scheme is applied, which permits the rigorous consideration of multiple reflections in a realistic urban area with hundreds of buildings. The developed surface energy balance model is then used to investigate the effects of the urban canopy geometry on urban albedo and surface temperature. The average urban albedo is less for a moderately compact city having high rise buildings with varying building heights than other cases. A cooler urban street surface temperature with smaller amplitude and earlier occurrence of the daily maximum temperature is observed in a high rise compact city than a low-rise sparse city. In order to understand quantitatively the causes of urban air warming, a new analytical zero-dimensional urban air temperature model is also developed, which is able to capture the features of the urban temperature variation. Results show that solar heat gain, evapotranspiration and the anthropogenic heat affect the mean air temperature, while heat storage and thermal convection affect the amplitude and phase shift of the daily cycle. A high-rise, high-density city generates low surface temperature, resulting in low air temperature during the day. The main conclusion of this study is that on the condition rural air temperature cycle is given, the mean temperature of the urban air and surface temperature is determined by the net heat gain and ventilation rate, and the amplitude and phase can be obtained from thermal storage and ventilation rate. Essentially, the net heat gain, thermal storage and ventilation are affected by urban morphology, and hence a city thermal environment can be designed. (419 words) DOI: 10.5353/th_b5153722 Subjects: Urban temperature

Full Product Details

Author:   Xinyan Yang ,  杨芯岩
Publisher:   Open Dissertation Press
Imprint:   Open Dissertation Press
Dimensions:   Width: 21.60cm , Height: 1.10cm , Length: 27.90cm
Weight:   0.503kg
ISBN:  

9781361330050


ISBN 10:   1361330058
Publication Date:   26 January 2017
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List