Synergetics: An Introduction

Author:   Hermann Haken
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   3rd ed. 1983. Softcover reprint of the original 3rd ed. 1983
Volume:   1
ISBN:  

9783642883408


Pages:   390
Publication Date:   30 March 2012
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $206.97 Quantity:  
Add to Cart

Share |

Synergetics: An Introduction


Add your own review!

Overview

Full Product Details

Author:   Hermann Haken
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   3rd ed. 1983. Softcover reprint of the original 3rd ed. 1983
Volume:   1
Dimensions:   Width: 17.00cm , Height: 2.10cm , Length: 24.40cm
Weight:   0.701kg
ISBN:  

9783642883408


ISBN 10:   3642883400
Pages:   390
Publication Date:   30 March 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Goal.- 1.1 Order and Disorder: Some Typical Phenomena.- 1.2 Some Typical Problems and Difficulties.- 1.3 How We Shall Proceed.- 2. Probability.- 2.1 Object of Our Investigations: The Sample Space.- 2.2 Random Variables.- 2.3 Probability.- 2.4 Distribution.- 2.5 Random Variables with Densities.- 2.6 Joint Probability.- 2.7 Mathematical Expectation E(X), and Moments.- 2.8 Conditional Probabilities.- 2.9 Independent and Dependent Random Variables.- 2.10 Generating Functions and Characteristic Functions.- 2.11 A Special Probability Distribution: Binomial Distribution.- 2.12 The Poisson Distribution.- 2.13 The Normal Distribution (Gaussian Distribution).- 2.14 Stirling’s Formula.- 2.15 Central Limit Theorem.- 3. Information.- 3.1 Some Basic Ideas.- 3.2 Information Gain: An Illustrative Derivation.- 3.3 Information Entropy and Constraints.- 3.4 An Example from Physics: Thermodynamics.- 3.5 An Approach to Irreversible Thermodynamics.- 3.6 Entropy—Curse of Statistical Mechanics?.- 4. Chance.- 4.1 A Model of Brownian Movement.- 4.2 The Random Walk Model and Its Master Equation.- 4.3 Joint Probability and Paths. Markov Processes. The Chapman-Kolmogorov Equation. Path Integrals.- Sections with an asterisk in the heading may be omitted during a first reading..- 4.4 How to Use Joint Probabilities. Moments. Characteristic Function. Gaussian Processes.- 4.5 The Master Equation.- 4.6 Exact Stationary Solution of the Master Equation for Systems in Detailed Balance.- 4.7 The Master Equation with Detailed Balance. Symmetrization, Eigenvalues and Eigenstates.- 4.8 Kirchhoff’s Method of Solution of the Master Equation.- 4.9 Theorems about Solutions of the Master Equation.- 4.10 The Meaning of Random Processes, Stationary State, Fluctuations, Recurrence Time.- 4.11 Master Equationand Limitations of Irreversible Thermodynamics.- 5. Necessity.- 5.1 Dynamic Processes.- 5.2 Critical Points and Trajectories in a Phase Plane. Once Again Limit Cycles.- 5.3 Stability.- 5.4 Examples and Exercises on Bifurcation and Stability.- 5.5 Classification of Static Instabilities, or an Elementary Approach to Thorn’s Theory of Catastrophes.- 6. Chance and Necessity.- 6.1 Langevin Equations: An Example.- 6.2 Reservoirs and Random Forces.- 6.3 The Fokker-Planck Equation.- 6.4 Some Properties and Stationary Solutions of the Fokker-Planck-Equation.- 6.6 Time-Dependent Solutions of the Fokker-Planck Equation.- 6.6 Solution of the Fokker-Planck Equation by Path Integrals.- 6.7 Phase Transition Analogy.- 6.8 Phase Transition Analogy in Continuous Media: Space-Dependent Order Parameter.- 7. Self-Organization.- 7.1 Organization.- 7.2 Self-Organization.- 7.3 The Role of Fluctuations: Reliability or Adaptibility? Switching.- 7.4 Adiabatic Elimination of Fast Relaxing Variables from the Fokker-Planck Equation.- 7.5 Adiabatic Elimination of Fast Relaxing Variables from the Master Equation.- 7.6 Self-Organization in Continuously Extended Media. An Outline of the Mathematical Approach.- 7.7 Generalized Ginzburg-Landau Equations for Nonequilibrium Phase Transitions.- 7.8 Higher-Order Contributions to Generalized Ginzburg-Landau Equations.- 7.9 Scaling Theory of Continuously Extended Nonequilibrium Systems.- 7.10 Soft-Mode Instability.- 7.11 Hard-Mode Instability.- 8. Physical Systems.- 8.1 Cooperative Effects in the Laser: Self-Organization and Phase Transition.- 8.2 The Laser Equations in the Mode Picture.- 8.3 The Order Parameter Concept.- 8.4 The Single-Mode Laser.- 8.5 The Multimode Laser.- 8.6 Laser with Continuously Many Modes. Analogy with Superconductivity.- 8.7First-Order Phase Transitions of the Single-Mode Laser.- 8.8 Hierarchy of Laser Instabilities and Ultrashort Laser Pulses.- 8.9 Instabilities in Fluid Dynamics: The Bénard and Taylor Problems.- 8.10 The Basic Equations.- 8.11 The Introduction of New Variables.- 8.12 Damped and Neutral Solutions (R ? Rc).- 8.13 Solution Near R = Rc (Nonlinear Domain). Effective Langevin Equations.- 8.14 The Fokker-Planck Equation and Its Stationary Solution.- 8.15 A Model for the Statistical Dynamics of the Gunn Instability Near Threshold.- 8.16 Elastic Stability: Outline of Some Basic Ideas.- 9. Chemical and Biochemical Systems.- 9.1 Chemical and Biochemical Reactions.- 9.2 Deterministic Processes, Without Diffusion, One Variable.- 9.3 Reaction and Diffusion Equations.- 9.4 Reaction-Diffusion Model with Two or Three Variables: The Brusselator and the Oregonator.- 9.5 Stochastic Model for a Chemical Reaction Without Diffusion. Birth and Death Processes. One Variable.- 9.6 Stochastic Model for a Chemical Reaction with Diffusion. One Variable.- 9.7 Stochastic Treatment of the Brusselator Close to Its Soft-Mode Instability.- 9.8 Chemical Networks.- 10. Applications to Biology.- 10.1 Ecology, Population-Dynamics.- 10.2 Stochastic Models for a Predator-Prey System.- 10.3 A Simple Mathematical Model for Evolutionary Processes.- 10.4 A Model for Morphogenesis.- 10.5 Order Parameters and Morphogenesis.- 10.6 Some Comments on Models of Morphogenesis.- 11. Sociology and Economics.- 11.1 A Stochastic Model for the Formation of Public Opinion.- 11.2 Phase Transitions in Economics.- 12. Chaos.- 12.1 What is Chaos?.- 12.2 The Lorenz Model. Motivation and Realization.- 12.3 How Chaos Occurs.- 12.4 Chaos and the Failure of the Slaving Principle.- 12.5 Correlation Function and FrequencyDistribution.- 12.6 Discrete Maps, Period Doubling, Chaos, Intermittency.- 13. Some Historical Remarks and Outlook.- References, Further Reading, and Comments.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List