Symmetries in Physics: Proceedings of the International Symposium Held in Honor of Professor Marcos Moshinsky at Cocoyoc, Morelos, México, June 3–7, 1991

Author:   Alejandro Frank ,  Kurt B. Wolf
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1992
ISBN:  

9783642772863


Pages:   390
Publication Date:   21 December 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

Symmetries in Physics: Proceedings of the International Symposium Held in Honor of Professor Marcos Moshinsky at Cocoyoc, Morelos, México, June 3–7, 1991


Add your own review!

Overview

Marcos Moshinsky was born on 20 April 1921, in Kiev, Ukraine, and em- igrated to Mexico at the age of four. He began work at the Universidad N acional Aut6noma de Mexico on 1 January 1942, as a laboratory assis- tant working on the measurement of cosmic rays. He pursued his graduate studies at Princeton University, and wrote his thesis under the supervision of Professor Eugene Wigner. Since 1949, and in spite of many visits and temporary posts held abroad, Moshinsky has been based in Mexico. Through example and encouragement, Moshinsky may be credited to a large extent with the shaping of Mexican scientific research. He has di- rected 40 B. Sc. , M. Sc. , and Ph. D. theses, and published over 200 scientific articles and four books; he holds all the Mexican science prizes, and sev- eral international ones, being a member of 11 academies of learning. Talent and circumstance have placed Marcos Moshinsky at the origin of several of the enterprises of the Mexican and Latin American scientific communities: he was founding editor of the Revista Mexicana de F{sica from 1952 to 1967; the Escuela Latinoamericana de Fisica was initiated and five times organized by him in Mexico; he was founding member and later president of the Academia de la Investigaci6n Cientifica (1962-1963), the Sociedad Mexicana de Fisica (1967-1969), and the Centro Internacional de Fisica y Matematicas A plicadas (1986-), in Cuernavaca.

Full Product Details

Author:   Alejandro Frank ,  Kurt B. Wolf
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1992
Dimensions:   Width: 17.00cm , Height: 2.20cm , Length: 24.20cm
Weight:   0.715kg
ISBN:  

9783642772863


ISBN 10:   3642772862
Pages:   390
Publication Date:   21 December 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Group Theory and the Harmonic Oscillator: The Work of Marcos Moshinsky.- 1.1 Introduction.- 1.2 Schematic theory of nuclear reactions.- 1.3 The Moshinsky brackets.- 1.4 Marcos' harmonic oscillator.- 1.5 Group theory and nuclear structure.- 1.6 Classical canonical transformations and their unitary representation.- 1.7 Rendering accidental degenerancy non-accidental.- 1.8 Collective models.- 1.9 Structure of matter in strong magnetic fields.- 1.10 Relativistic oscillators.- Electronic and Molecular Physics.- 2 Generalizing the BCS Universal Constants to High-Temperature Superconductivity.- 2.1 Introduction.- 2.2 Generalized BCS Tc-formula.- 2.3 Conclusion.- 3 Fermion Clustering in an Exactly- Soluble N-Fermion Model for Hadronic, Nuclear, and Superconductivity Physics.- 3.1 Introduction.- 3.2 Cooper pairing.- 3.3 Conclusions.- 4 The Scattering Approach to Quantum Electronic Transport.- 4.1 Introduction.- 4.2 Two-terminal systems.- 4.3 Beyond the isotropic model.- 4.4 A three-terminal system.- 5 Symmetry-Avoided Crossings and their Role in the Catalytic Activity of Transition Metals.- 5.1 A personal introduction.- 5.2 General introduction.- 5.3 Method.- 5.4 Results.- 5.5 Conclusions.- Nuclear Physics.- 6 The Symplectic Model and Potential-Energy Surfaces.- 6.1 Introduction.- 6.2 The pseudo-symplectic model.- 6.3 A procedure to construct a PES.- 6.4 Application to 1224Mg and 92238U.- 6.5 Conclusions.- 7 The SU(3) Generalization of Racah's SU(2j + 1) ? SU (2) Group-Subgroup Embedding.- 7.1 Introduction.- 7.2 Resume of Racah's method.- 7.3 The U(3) ? U(dim[m]) embedding.- 7.4 Racah basis for the Lie algebra of any subgroup G ? U(dim[m]).- 7.5 Zeroes of U(3) Racah coefficients.- 8 Scaling and Universality in the Shock Compression of Condensed Matter.- 8.1 Introduction.- 8.2 Rankine-Hugoniot equations.- 8.3 Universality.- 8.4 The empirical expressions for the pressure and internal energy on the shock Hugoniot.- 8.5 A law of corresponding states: scaling.- 8.6 Formal implicit solution for the pressure on the Hugoniot..- 8.7 Conditions on R(P, V) for a double pole in PH(V).- 8.8 Consistency conditions.- 8.9 The complete equation of state in the strong shock regime.- 8.10 The thermodynamic coefficients, the specific heat and the Gruneisen parameter.- 8.11 A thermodynamic expression for the constant A.- 8.12 Summary of results and conclusions.- 9 Deriving Nuclei from Quarks.- 9.1 Introduction.- 9.2 Boson expansions.- 9.3 Iterative mappings of quark systems.- 9.4 The Bonn quark shell model.- 9.5 Results of test calculations for 16O.- 9.6 Concluding remarks.- 10 Binding Energies of Nuclei and Atoms.- Particles and Relativity.- 11 The Relativistic Oscillator and Mass Formulas.- 12 Relativistic Equations in External Fields.- 12.1 Introduction.- 12.2 The Dirac oscillator, a study case.- 12.3 Extended supersymmetric Hamiltonians.- 12.4 Dirac equation in 3 + 1 dimensions.- 12.5 Susy Dirac equation in 4 + 1 and 2 + 1 dimensions.- 12.6 Beyond supersymmetry.- 12.7 Conclusions.- 13 A Parallelism Between Quantum Gravity and the IR Limit in QCD (Emergence of Hadron and Nuclear Symmetries).- 13.1 Symmetries in Nuclei: the IBM Quadrupolar Algebraics.- 13.2 Gravity-like features in hadron dynamics.- 13.3 Flavor SU(3) is generated by QCD, once the fifth is set aside.- 13.4 Effective strong gravity is induced by QCD.- 13.5 The algebraics of hadrons and nuclei (classical and quantum).- 13.6 Hadron systematics.- 13.7 The interacting boson model in nuclei.- 13.8 Quadrupolar symmetries in nuclei.- 14 On Rainich-Misner-Wheeler Conditions in Nonlinear Electrodynamics.- 15 Hamiltonian Formulation of a Simple Covariant Harmonic Oscillator for Bosons and Fermions.- 15.1 Introduction.- 15.2 Light cone Hamiltonian formalism.- 15.3 Covariant harmonic oscillator model for two spin-0 constituents.- 15.4 Covariant harmonic oscillator models for two spin-1/2 constituents.- 15.5 Summary and conclusions.- 15.6 Appendix A.- Symmetry and Decay.- 16 Doorway States in Classical Physics.- 16.1 Introduction.- 16.2 The acoustical model.- 16.3 The mathematical setting.- 16.4 Numerical results.- 16.5 Conclusions.- 17 Resonant States and the Decay Process.- 17.1 Introduction.- 17.2 The nondecay amplitude.- 17.3 Time-dependent Green function and resonant states.- 17.4 Full discrete expansion of g(r,r?;t) and A(t).- 17.5 Example.- 17.6 Exact one-level decay formula.- 17.7 Conclusion.- 17.A Appendix: Determination of the residue at the pole of the outgoing Green function.- 18 The Decay Process: An Exactly Soluble Example and its Implications.- 18.1 Introduction.- 18.2 A paradox.- 18.3 The problem.- 18.4 The solution.- 18.5 The behavior of A(K,t) for large times.- 18.6 The behavior of A(K,t) for very short times.- 18.7 Conclusion.- 18.A Appendix.- 19 Moshinsky Functions, Resonances and Tunneling.- 19.1 Introduction.- 19.2 The Moshinsky function.- 19.3 Applications: transient effects.- 19.4 Applications: one-dimensional tunneling.- 19.5 Applications: decay.- 19.6 Applications: resonance scattering.- Phase Space Dynamics.- 20 Nonstationary Oscillator in Quantum Mechanics.- 20.1 Introduction.- 20.2 Linear integrals of motion.- 20.3 Ground state and coherent states of the parametric oscillator.- 20.4 Fock states and transition probabilities of the time-dependent oscillator.- 20.5 Invariants and propagator.- 20.6 Damped oscillator.- 20.7 Casimir effect and parametric oscillator.- 21 Symmetry and Dynamical Lie Algebras in Classical and Quantum Mechanics.- 21.1 Introduction.- 21.2 Definition and properties of symmetry and dynamical Lie algebras.- 21.3 The case of two-dimensional rotationally-invariant Hamiltonians in classical mechanics.- 21.4 The case of two-dimensional rotationally-invariant Hamiltonians in quantum mechanics.- 21.5 Conclusion.- 22 Canonical Transformations in Mechanics vis-a-vis Those in Optics.- 22.1 Introduction.- 22.2 The phase space of mechanics and that of optics.- 22.3 Transformations in mechanical vis-a-vis optical phase space.- 22.4 The canonical transformations that are specific to optics...- 22.5 Outlook: canonical transformations in wave optics.- Round Table.- 23 Science and Technology in Latin America.- Author index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List