Spintronics Handbook, Second Edition: Spin Transport and Magnetism: Volume Three: Nanoscale Spintronics and Applications

Author:   Evgeny Y. Tsymbal (University of Nebraska-Lincoln, USA) ,  Igor Žutić
Publisher:   Taylor & Francis Inc
Edition:   2nd edition
ISBN:  

9781498769709


Pages:   630
Publication Date:   28 June 2019
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $347.00 Quantity:  
Add to Cart

Share |

Spintronics Handbook, Second Edition: Spin Transport and Magnetism: Volume Three: Nanoscale Spintronics and Applications


Add your own review!

Overview

Full Product Details

Author:   Evgeny Y. Tsymbal (University of Nebraska-Lincoln, USA) ,  Igor Žutić
Publisher:   Taylor & Francis Inc
Imprint:   CRC Press Inc
Edition:   2nd edition
Weight:   1.315kg
ISBN:  

9781498769709


ISBN 10:   1498769705
Pages:   630
Publication Date:   28 June 2019
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Volume 3. Nanoscale Spintronics and Applications Section VI. Spin Transport and Magnetism at the Nanoscale 1. Spin-Polarized Scanning Tunneling Microscopy 2. Point Contact Andreev Reflection Spectroscopy 3. Ballistic Spin Transport 4. Graphene Spintronics 5. Spintronics in 2D Materials 6. Magnetism and Transport in Diluted Magnetic Semiconductor Quantum Dots 7. Spin Transport in Hybrid Nanostructures 8. Spin Caloritronics 9. Nonlocal Spin Valves in Metallic Nanostructures 10. Magnetic Skyrmions on Discrete Lattices 11. Molecular Spintronics Section VII. Applications 12. Magnetoresistive Sensors based on Magnetic Tunneling Junctions 13. Magnetoresistive Random Access Memory (MRAM) 14. Emerging Spintronic Memories 15. GMR Spin-Valve Biosensors 16. Semiconductor Spin-Lasers 17. Spin Transport and Magnetism in Electronic Systems 18. Spin Wave Logic Devices

Reviews

Author Information

Evgeny Tsymbal is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Evgeny Tsymbal’s research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a fellow of the American Physical Society, a fellow of the Institute of Physics, UK, and a recipient of the Outstanding Research and Creativity Award (ORCA). Igor Žutić is a Professor of Physics at the University at Buffalo, the State University of New York. His work spans topics from high-temperature superconductors, Majorana fermions, unconventional magnetism, proximity effects, and two-dimensional materials, to prediction of various spin-based devices that are not limited to the concept of magnetoresistance used in commercial application for magnetically stored information. Such devices, including spin photodiodes, spin solar cells, spin transistors, and spin lasers (front cover illustration) have already been experimentally demonstrated. Igor Žutic´ is a fellow of the American Physical Society, a recipient of 2006 National Science Foundation CAREER Award, and 2019 State University of New York Chancellor’s Award for Excellence.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List