Solid State Physics – An Introduction 2e

Author:   P Hofmann
Publisher:   Wiley-VCH Verlag GmbH
Edition:   2nd Edition
ISBN:  

9783527412822


Pages:   264
Publication Date:   01 April 2015
Replaced By:   9783527414109
Format:   Paperback
Availability:   To order   Availability explained
Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us.

Our Price $123.50 Quantity:  
Add to Cart

Share |

Solid State Physics – An Introduction 2e


Add your own review!

Overview

Full Product Details

Author:   P Hofmann
Publisher:   Wiley-VCH Verlag GmbH
Imprint:   Blackwell Verlag GmbH
Edition:   2nd Edition
Dimensions:   Width: 17.40cm , Height: 1.50cm , Length: 24.20cm
Weight:   0.466kg
ISBN:  

9783527412822


ISBN 10:   3527412824
Pages:   264
Publication Date:   01 April 2015
Audience:   Professional and scholarly ,  Professional & Vocational
Replaced By:   9783527414109
Format:   Paperback
Publisher's Status:   Active
Availability:   To order   Availability explained
Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us.

Table of Contents

Preface of the First Edition XI Preface of the Second Edition XIII Physical Constants and Energy Equivalents XV 1 Crystal Structures 1 1.1 General Description of Crystal Structures 2 1.2 Some Important Crystal Structures 4 1.2.1 Cubic Structures 4 1.2.2 Close-Packed Structures 5 1.2.3 Structures of Covalently Bonded Solids 6 1.3 Crystal Structure Determination 7 1.3.1 X-Ray Diffraction 7 1.3.1.1 Bragg Theory 7 1.3.1.2 Lattice Planes and Miller Indices 8 1.3.1.3 General Diffraction Theory 9 1.3.1.4 The Reciprocal Lattice 11 1.3.1.5 The Meaning of the Reciprocal Lattice 12 1.3.1.6 X-Ray Diffraction from Periodic Structures 14 1.3.1.7 The Ewald Construction 15 1.3.1.8 Relation Between Bragg and Laue Theory 16 1.3.2 Other Methods for Structural Determination 17 1.3.3 Inelastic Scattering 17 1.4 Further Reading 18 1.5 Discussion and Problems 18 2 Bonding in Solids 23 2.1 Attractive and Repulsive Forces 23 2.2 Ionic Bonding 24 2.3 Covalent Bonding 25 2.4 Metallic Bonding 28 2.5 Hydrogen Bonding 29 2.6 van derWaals Bonding 29 2.7 Further Reading 30 2.8 Discussion and Problems 30 3 Mechanical Properties 33 3.1 Elastic Deformation 35 3.1.1 Macroscopic Picture 35 3.1.1.1 Elastic Constants 35 3.1.1.2 Poisson’s Ratio 36 3.1.1.3 Relation between Elastic Constants 37 3.1.2 Microscopic Picture 37 3.2 Plastic Deformation 38 3.2.1 Estimate of the Yield Stress 39 3.2.2 Point Defects and Dislocations 41 3.2.3 The Role of Defects in Plastic Deformation 41 3.3 Fracture 43 3.4 Further Reading 44 3.5 Discussion and Problems 45 4 Thermal Properties of the Lattice 47 4.1 Lattice Vibrations 47 4.1.1 A Simple Harmonic Oscillator 47 4.1.2 An Infinite Chain of Atoms 48 4.1.2.1 One Atom Per Unit Cell 48 4.1.2.2 The First Brillouin Zone 51 4.1.2.3 Two Atoms per Unit Cell 52 4.1.3 A Finite Chain of Atoms 53 4.1.4 Quantized Vibrations, Phonons 55 4.1.5 Three-Dimensional Solids 57 4.1.5.1 Generalization to Three Dimensions 57 4.1.5.2 Estimate of the Vibrational Frequencies from the Elastic Constants 58 4.2 Heat Capacity of the Lattice 60 4.2.1 ClassicalTheory and Experimental Results 60 4.2.2 Einstein Model 62 4.2.3 Debye Model 63 4.3 Thermal Conductivity 67 4.4 Thermal Expansion 70 4.5 Allotropic Phase Transitions and Melting 71 References 74 4.6 Further Reading 74 4.7 Discussion and Problems 74 5 Electronic Properties ofMetals: Classical Approach 77 5.1 Basic Assumptions of the Drude Model 77 5.2 Results from the Drude Model 79 5.2.1 DC Electrical Conductivity 79 5.2.2 Hall Effect 81 5.2.3 Optical Reflectivity of Metals 82 5.2.4 TheWiedemann–Franz Law 85 5.3 Shortcomings of the Drude Model 86 5.4 Further Reading 87 5.5 Discussion and Problems 87 6 Electronic Properties of Solids: Quantum Mechanical Approach 91 6.1 The Idea of Energy Bands 92 6.2 Free Electron Model 94 6.2.1 The Quantum Mechanical Eigenstates 94 6.2.2 Electronic Heat Capacity 99 6.2.3 TheWiedemann–Franz Law 100 6.2.4 Screening 101 6.3 The General Form of the Electronic States 103 6.4 Nearly Free Electron Model 106 6.5 Tight-binding Model 111 6.6 Energy Bands in Real Solids 116 6.7 Transport Properties 122 6.8 Brief Review of Some Key Ideas 126 References 127 6.9 Further Reading 127 6.10 Discussion and Problems 127 7 Semiconductors 131 7.1 Intrinsic Semiconductors 132 7.1.1 Temperature Dependence of the Carrier Density 134 7.2 Doped Semiconductors 139 7.2.1 n and p Doping 139 7.2.2 Carrier Density 141 7.3 Conductivity of Semiconductors 144 7.4 Semiconductor Devices 145 7.4.1 The pn Junction 145 7.4.2 Transistors 150 7.4.3 Optoelectronic Devices 151 7.5 Further Reading 155 7.6 Discussion and Problems 155 8 Magnetism 159 8.1 Macroscopic Description 159 8.2 Quantum Mechanical Description of Magnetism 161 8.3 Paramagnetism and Diamagnetism in Atoms 163 8.4 Weak Magnetism in Solids 166 8.4.1 Diamagnetic Contributions 167 8.4.1.1 Contribution from the Atoms 167 8.4.1.2 Contribution from the Free Electrons 167 8.4.2 Paramagnetic Contributions 168 8.4.2.1 Curie Paramagnetism 168 8.4.2.2 Pauli Paramagnetism 170 8.5 Magnetic Ordering 171 8.5.1 Magnetic Ordering and the Exchange Interaction 172 8.5.2 Magnetic Ordering for Localized Spins 174 8.5.3 Magnetic Ordering in a Band Picture 178 8.5.4 Ferromagnetic Domains 180 8.5.5 Hysteresis 181 References 182 8.6 Further Reading 183 8.7 Discussion and Problems 183 9 Dielectrics 187 9.1 Macroscopic Description 187 9.2 Microscopic Polarization 189 9.3 The Local Field 191 9.4 Frequency Dependence of the Dielectric Constant 192 9.4.1 Excitation of Lattice Vibrations 192 9.4.2 Electronic Transitions 196 9.5 Other Effects 197 9.5.1 Impurities in Dielectrics 197 9.5.2 Ferroelectricity 198 9.5.3 Piezoelectricity 199 9.5.4 Dielectric Breakdown 200 9.6 Further Reading 200 9.7 Discussion and Problems 201 10 Superconductivity 203 10.1 Basic Experimental Facts 204 10.1.1 Zero Resistivity 204 10.1.2 The Meissner Effect 207 10.1.3 The Isotope Effect 209 10.2 SomeTheoretical Aspects 210 10.2.1 Phenomenological Theory 210 10.2.2 Microscopic BCSTheory 212 10.3 Experimental Detection of the Gap 218 10.4 Coherence of the Superconducting State 220 10.5 Type I and Type II Superconductors 222 10.6 High-Temperature Superconductivity 224 10.7 Concluding Remarks 226 References 227 10.8 Further Reading 227 10.9 Discussion and Problems 227 11 Finite Solids and Nanostructures 231 11.1 Quantum Confinement 232 11.2 Surfaces and Interfaces 234 11.3 Magnetism on the Nanoscale 237 11.4 Further Reading 238 11.5 Discussion and Problems 239 Appendix A 241 A.1 Explicit Forms of Vector Operations 241 A.2 Differential Form of the Maxwell Equations 242 A.3 Maxwell Equations in Matter 243 Index 245

Reviews

... This textbook definitely has an interesting scope within an established field and it has been written with appealing didactic skills. This first edition truly deserves to be discovered by students of various disciplines, who want to obtain a quick introduction to solid state physics. B. Jacoby, European Journal of Physics 30, 919


... This textbook definitely has an interesting scope within an established field and it has been written with appealing didactic skills. This first edition truly deserves to be discovered by students of various disciplines, who want to obtain a quick introduction to solid state physics. B. Jacoby, European Journal of Physics 30, 919


... This textbook definitely has an interesting scope within an established field and it has been written with appealing didactic skills. This first edition truly deserves to be discovered by students of various disciplines, who want to obtain a quick introduction to solid state physics. B. Jacoby, European Journal of Physics 30, 919


Author Information

Philip Hofmann studied physics at the Free University, Berlin and did his PhD research at the Fritz-Haber-Institute of the Max Planck Society, also in Berlin. He stayed at the Oak Ridge National Laboratory, USA, as a Feodor Lynen Fellow of the Alexander von Humboldt Foundation. In 1998, he moved to the University of Aarhus, Denmark, where he is associated with the Synchrotron Radiation Source and the Interdisciplinary Nanoscience Center (iNANO). His research is primarily focused on the electronic structure of solids and their surfaces.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List