Signal Decomposition Using Masked Proximal Operators

Author:   Bennet E. Meyers ,  Stephen P. Boyd
Publisher:   now publishers Inc
ISBN:  

9781638281023


Pages:   92
Publication Date:   16 January 2023
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $184.80 Quantity:  
Add to Cart

Share |

Signal Decomposition Using Masked Proximal Operators


Add your own review!

Overview

The decomposition of a time series signal into components is an age old problem, with many different approaches proposed, including traditional filtering and smoothing, seasonal-trend decomposition, Fourier and other decompositions, PCA and newer variants such as nonnegative matrix factorization, various statistical methods, and many heuristic methods. In this monograph, the well-studied problem of decomposing a vector time series signal into components with different characteristics, such as smooth, periodic, nonnegative, or sparse are covered. A general framework in which the components are defined by loss functions (which include constraints), and the signal decomposition is carried out by minimizing the sum of losses of the components (subject to the constraints) are included. When each loss function is the negative log-likelihood of a density for the signal component, this framework coincides with maximum a posteriori probability (MAP) estimation; but it also includes many other interesting cases. Summarizing and clarifying prior results, two distributed optimization methods for computing the decomposition are presented, which find the optimal decomposition when the component class loss functions are convex, and are good heuristics when they are not. Both methods require only the masked proximal operator of each of the component loss functions, a generalization of the well-known proximal operator that handles missing entries in its argument. Both methods are distributed, i.e., handle each component separately. Also included are tractable methods for evaluating the masked proximal operators of some loss functions that have not appeared in the literature.

Full Product Details

Author:   Bennet E. Meyers ,  Stephen P. Boyd
Publisher:   now publishers Inc
Imprint:   now publishers Inc
Weight:   0.143kg
ISBN:  

9781638281023


ISBN 10:   1638281025
Pages:   92
Publication Date:   16 January 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. Introduction 2. Signal Decomposition 3. Background and Related Work 4. Solution Methods 5. Component Class Attributes 6. Component Class Examples 7. Examples Acknowledgements Appendix References

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List