Relativistically Intense Laser–Microplasma Interactions

Author:   Tobias Ostermayr
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2019
ISBN:  

9783030222079


Pages:   166
Publication Date:   25 July 2019
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $284.60 Quantity:  
Add to Cart

Share |

Relativistically Intense Laser–Microplasma Interactions


Add your own review!

Overview

This dissertation covers several important aspects of relativistically intense laser–microplasma interactions and some potential applications. A Paul-trap based target system was developed to provide fully isolated, well defined and well positioned micro-sphere-targets for experiments with focused peta-watt laser pulses. The laser interaction turned such targets into microplasmas, emitting proton beams with kinetic energies exceeding 10 MeV. The proton beam kinetic energy spectrum and spatial distribution were tuned by variation of the acceleration mechanism, reaching from broadly distributed spectra in relatively cold plasma expansions to spectra with relative energy spread as small as 20% in spherical multi-species Coulomb explosions and in directed acceleration processes. Numerical simulations and analytical calculations support these experimental findings and show how microplasmas may be used to engineer laser-driven proton sources. In a secondeffort, tungsten micro-needle-targets were used at a peta-watt laser to produce few-keV x-rays and 10-MeV-level proton beams simultaneously, both measured to have only few-µm effective source-size. This source was used to demonstrate single-shot simultaneous radiographic imaging with x-rays and protons of biological and technological samples.  Finally, the dissertation discusses future perspectives and directions for laser–microplasma interactions including non-spherical target shapes, as well as thoughts on experimental techniques and advanced quantitative image evaluation for the laser driven radiography.

Full Product Details

Author:   Tobias Ostermayr
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2019
Weight:   0.454kg
ISBN:  

9783030222079


ISBN 10:   3030222071
Pages:   166
Publication Date:   25 July 2019
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Pat I: Introduction and basics.- Scientific context and motivation.-  Laser-plasmas.- Part II: Experimental methods.- High-power lasers.- Transportable Paul trap for isolated micro-targets in vacuum.- Part III: Laser-microplasma interactions.- Laser-driven ion acceleration using isolated micro-sphere targets.- Laser-driven micro-source for bi-modal radiographic imaging.- Part IV: Summary and perspectives. Summary.- Challenges and Perspectives.- Part V: Appendix.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List