Relativistic Field Theory for Microwave Engineers

Author:   Matthew Morgan
Publisher:   Artech House Publishers
Edition:   Unabridged edition
ISBN:  

9781685690670


Pages:   352
Publication Date:   30 June 2024
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $282.04 Quantity:  
Add to Cart

Share |

Relativistic Field Theory for Microwave Engineers


Add your own review!

Overview

This book explores the fundamental but often overlooked connection between Maxwell's equations, as they are taught in undergraduate electrical engineering courses, and special relativity. Written for an audience of practical engineers instead of theoretical physicists, it exposes the underlying contradictions brought about by the emergence of electromagnetic theory, one of the greatest triumphs in mathematical physics of all time that unified the phenomena of electricity, magnetism, and light, into a world in which the classical Galilean principle of relativity was considered incontrovertible. It explains how Einstein redefined the concepts of space and time and what it means to measure them, while altogether disbanding the notion of global simultaneity.   A manifestly relativistic formulation of electromagnetic laws is first presented and then applied to common engineering problems, like the interaction of electromagnetic fields at dynamic interfaces, the derivation of propagating modes in closed metal waveguides, and the foundations of microwave network theory. Mathematical toolkits for relativistic analysis, such as tensor notation and spacetime algebra, are explained. These tools are then used to analyze the consequences of motion at relativistic speeds upon otherwise well-known electromagnetic circuit behaviors.   Well-drawn and insightful diagrams along with articulate explanations help the reader to gain an intuitive understanding of four-dimensional spacetime and the nature of the electromagnetic field in that context, while summary tables and comprehensive appendices serve as a resource for further selfdirected exploration. Readers trained in microwave engineering will learn to see their field from a new perspective, and shall gain from that new insight the ability to conceive of unexpected solutions to practical engineering problems that might otherwise defy one's intuition.

Full Product Details

Author:   Matthew Morgan
Publisher:   Artech House Publishers
Imprint:   Artech House Publishers
Edition:   Unabridged edition
Dimensions:   Width: 15.20cm , Height: 2.50cm , Length: 22.90cm
Weight:   0.635kg
ISBN:  

9781685690670


ISBN 10:   168569067
Pages:   352
Publication Date:   30 June 2024
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Chapter 1 Classical Electromagnetics 1.1 Early Concepts in Electricity and Magnetism 1.2 Advancement Through Experimentation 1.3 Mathematical Refinement 1.4 Matter and Energy   Chapter 2 Reference Frame Transformation 2.1 Galilean Transformation 2.2 Spacetime 2.3 Lorentz Transformation 2.4 Poincare’s Coordinate Time and Other Variants 2.5 Resolution of Apparent Paradoxes   Chapter 3 Waves in Spacetime 3.1 Partial Boosts 3.2 Doppler Effects 3.3 Global Navigation Satellite Systems 3.4 Dispersion in Minkowski Space   Chapter 4 Covariant Electrodynamics 4.1 Kinematics of Moving Charges 4.2 Ricci Calculus 4.3 Relativistic Representations of the EM Field 4.4 Maxwell’s Equations in Tensor Form 4.5 Lorentz Force Law in Tensor Form 4.6 Covariant Wave Equations   Chapter 5 The Calculus of Spacetime 5.1 Geometric Algebra 5.2 Electromagnetic Laws in Spacetime Algebra 5.3 Transformations 5.4 Subalgebras   Chapter 6 Interactions with Matter 6.1 Macroscopic Field Equations 6.2 Waves in Matter 6.3 Material Interfaces 6.4 Wave Reflection and Refraction   Chapter 7 Guided Waves 7.1 Rectangular Waveguide 7.2 Circular Waveguide 7.3 Dispersion 7.4 Coaxial Line   Chapter 8 Network Analysis 8.1 Integral Forms 8.2 Compact Ports 8.3 A New Language for Network Analysis 8.4 Rotors for Network Analysis

Reviews

Author Information

Matthew A. Morgan is a tenured Scientist and Research Engineer for the National Radio Astronomy Observatory. He received his B.S. in electrical engineering from the University of Virginia in 1999 and his M.S. and Ph.D in electrical engineering from the California Institute of Technology in 2001 and 2003. Dr. Morgan is currently the head of the CDL's Integrated Receiver Development program and is involved in the design and development of low-noise receivers, components, and novel concepts for radio astronomy instrumentation in the centimeter-wave, millimeter-wave, and submillimeter-wave frequency ranges.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List