Regenerative Medicine and Human Genetic Modification

Author:   Ed Gaskin
Publisher:   Createspace Independent Publishing Platform
ISBN:  

9781500523718


Pages:   142
Publication Date:   16 October 2014
Format:   Paperback
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $26.27 Quantity:  
Add to Cart

Share |

Regenerative Medicine and Human Genetic Modification


Add your own review!

Overview

Chinese scientists have genetically modified a human embryo again, read the headline. Genetic engineering of humans is no longer science fiction. The International Summit on Human Gene Editing was held to discuss critical issues in this area. Gene editing, a key tool for this work offers great promise but potential problems. Yet, there have not been any Congressional Hearings on the topic. In terms of the future of regenerative medicine, one just has to look at the Mexican Salamander, which has the ability to regenerate a limb when it is cut off. Image if someone who had a heart attack or needed a new kidney, and they could trigger their body to repair or grow them a new heart or kidney. There are many organisms in nature that have very long life spans or are considered biologically immortal. Regenerative medicine is looking to understand what is happening with these animals at the genetic level and then apply those lessons to humans. We are much further ahead in the quest to genetically engineer humans than what most people realize. Imagine before you Tinker Toys or Legos of all different sizes, shapes and colors. Imagine those pieces are actually genes from insects, plants, animals and people that can be used interchangeably to provide humans characteristics only comic book superheroes possess. Scientists have already taken the gene that provides the jellyfish its green color and inserted it into the DNA of a white rabbit to create a green rabbit. Scientists have taken the genes that enable spiders to make webbing and combined them with a goat's DNA as a way for the goat to make spider silk , a strong new fiber. We can do similar things with human DNA. Genomics provides us the equivalent of the Application Program Interface (API) for each human. Genomics, genetic engineering, embryonic stem cells, and nuclear transfer (cloning) independently have great promise and peril for us. There are numerous similarities between computer programing and genetic programing or genetic modification. Instead of programing with zero's and one's, we use C, T, A, G. We can reprogram DNA, cells and genes. The excitement with these new technologies is we can more effectively treat chronic diseases such as Parkinson's disease, osteoarthritis, osteoporosis, age-related macular degeneration, and atherosclerosis, which accounts for over 75% of medical costs. There are over 3,000 genetic diseases such as sickle cell anemia we could treat. We could treat infectious diseases such as HIV by developing an HIV resistant immune system. However, there are also dangers. The same way computers and software can be hacked, genetic structures can be hacked. Genetic doping is possible. Because of the similarity between digital and genetic technologies, much of what we learned in the digital revolution can be transferred to the application of genetic modification and regenerative medicine. This similarity and the potential applications have not escaped the attention of companies such as Google who has created a company, Calico and is making major investments in these areas and are prepared to spend in the hundreds of millions for research. As a result of these powerful technologies we are on the brink of a genetic revolution similar in size and scope to the digital revolution (think biological versions of Google, Amazon, and Apple, but without any rules or guidelines). This book reviews the religious and scientific arguments, and refines the work of Norman Ford who was writing in the context of reproductive technologies, not the debates concerning embryonic stem cells and therapeutic cloning, and looks at where we are headed, with a focus on Dr. Michael West, a thought leader in this area. In terms of ethics, while some problems have been solved e.g. creating stem cells, use of cloning, the use of pre-implementation embryos for experimentation is still an issue. The chapter on the Primitive Streak addresses that issue.

Full Product Details

Author:   Ed Gaskin
Publisher:   Createspace Independent Publishing Platform
Imprint:   Createspace Independent Publishing Platform
Dimensions:   Width: 15.20cm , Height: 0.80cm , Length: 22.90cm
Weight:   0.218kg
ISBN:  

9781500523718


ISBN 10:   1500523712
Pages:   142
Publication Date:   16 October 2014
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Ed Gaskin helped develop the business plans for Geron Corporation, a pioneer in anti-aging research using embryonic stem cells, therapeutic cloning and telomerase inhibition, Origen Therapeutics where he was a board member, and Cyagra, LLC. He was a consultant to Advanced Cell Technology, and was on their IRB board. He was part of the life sciences practice at Deloitte Consulting where he was the lead advisor for companies such as Parexel International. He has done consulting engagements for companies ranging from Kaiser Permanente and Harvard Community Health to IBM's health care practice. His focus is on the future of health care, new ventures, innovation, and disruption in health care and life sciences. He has a Master of Science in Management degree from MIT's Sloan School of Management and a M.Div. from Gordon-Conwell Theological Seminary where his focus was on contemporary theology and ethics. We have the ability to genetically modify humans with genetic code from plants, insects and animals to provide humans functionality that has never existed, such as night vision, or sonar. We could create novel characteristics that previously only comic book superheroes or villains had. We have the ability to self-direct the evolution of the human species. We have the ability to program our human genetic code, in a similar way to how we program computers to develop apps for a smartphone. We can use this technology to treat chronic, genetic and even infectious diseases. This ability to treat disease or enhance human characteristics will revolutionize biotech in the same way digital technology has changed the world in the last 15 years. There are dangers. Genetic code can be hacked, and gene doping is possible. I believe we should have a national discussion on this topic. says Ed Gaskin.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List