Quantum Mechanics – Concepts and Applications 2e

Author:   N Zettili
Publisher:   John Wiley and Sons Ltd
Edition:   2nd Edition
ISBN:  

9780470026793


Pages:   688
Publication Date:   01 March 2009
Replaced By:   9781118307892
Format:   Paperback
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Our Price $211.20 Quantity:  
Add to Cart

Share |

Quantum Mechanics – Concepts and Applications 2e


Add your own review!

Overview

Full Product Details

Author:   N Zettili
Publisher:   John Wiley and Sons Ltd
Imprint:   Wiley-Blackwell
Edition:   2nd Edition
Dimensions:   Width: 16.90cm , Height: 3.60cm , Length: 24.30cm
Weight:   1.176kg
ISBN:  

9780470026793


ISBN 10:   0470026790
Pages:   688
Publication Date:   01 March 2009
Audience:   College/higher education ,  Tertiary & Higher Education
Replaced By:   9781118307892
Format:   Paperback
Publisher's Status:   Out of Print
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Table of Contents

"Preface. 1. Origins of Quantum Physics. 1.1 Historical Note. 1.2 Particle Aspect of Radiation. 1.3 Wave Aspect of Particles. 1.4 Particles versus Waves. 1.5 Indeterministic Nature of the Microphysical World. 1.6 Atomic Transitions and Spectroscopy. 1.7 Quantization Rules. 1.8 Wave Packets. 1.9 Concluding Remarks. 1.10 Solved Problems. Exercises. 2. Mathematical Tools of Quantum Mechanics. 2.1 Introduction. 2.2 The Hilbert Space and Wave Functions. 2.3 Dirac Notation. 2.4 Operators. 2.5 Representation in Discrete Bases. 2.6 Representation in Continuous Bases. 2.7 Matrix and Wave Mechanics. 2.8 Concluding Remarks. 2.9 Solved Problems. Exercises. 3. Postulates of Quantum Mechanics. 3.1 Introduction. 3.2 The Basic Postulates of Quantum Mechanics. 3.3 The State of a System. 3.4 Observables and Operators. 3.5 Measurement in Quantum Mechanics. 3.6 Time Evolution of the System’s State. 3.7 Symmetries and Conservation Laws. 3.8 Connecting Quantum to Classical Mechanics. 3.9 Solved Problems. Exercises. 4. One-Dimensional Problems. 4.1 Introduction. 4.2 Properties of One-Dimensional Motion. 4.3 The Free Particle: Continuous States. 4.4 The Potential Step. 4.5 The Potential Barrier and Well. 4.6 The Infinite Square Well Potential. 4.7 The Finite Square Well Potential. 4.8 The Harmonic Oscillator. 4.9 Numerical Solution of the Schrödinger Equation. 4.10 Solved Problems. Exercises. 5. Angular Momentum. 5.1 Introduction. 5.2 Orbital Angular Momentum. 5.3 General Formalism of Angular Momentum. 5.4 Matrix Representation of Angular Momentum. 5.5 Geometrical Representation of Angular Momentum. 5.6 Spin Angular Momentum. 5.7 Eigen functions of Orbital Angular Momentum. 5.8 Solved Problems. Exercises. 6. Three-Dimensional Problems. 6.1 Introduction. 6.2 3D Problems in Cartesian Coordinates. 6.3 3D Problems in Spherical Coordinates. 6.4 Concluding Remarks. 6.5 Solved Problems. Exercises. 7. Rotations and Addition of Angular Momenta. 7.1 Rotations in Classical Physics. 7.2 Rotations in Quantum Mechanics. 7.3 Addition of Angular Momenta. 7.4 Scalar, Vector and Tensor Operators. 7.5 Solved Problems. Exercises. 8. Identical Particles. 8.1 Many-Particle Systems. 8.2 Systems of Identical Particles. 8.3 The Pauli Exclusion Principle. 8.4 The Exclusion Principle and the Periodic Table. 8.5 Solved Problems. Exercises. 9. Approximation Methods for Stationary States. 9.1 Introduction. 9.2 Time-Independent Perturbation Theory. 9.3 The Variational Method. 9.4 The Wentzel ""Kramers"" Brillou in Method. 9.5 Concluding Remarks. 9.6 Solved Problems. Exercises. 10. Time-Dependent Perturbation Theory. 10.1 Introduction. 10.2 The Pictures of Quantum Mechanics. 10.3 Time-Dependent Perturbation Theory. 10.4 Adiabatic and Sudden Approximations. 10.5 Interaction of Atoms with Radiation. 10.6 Solved Problems. Exercises. 11. Scattering Theory. 11.1 Scattering and Cross Section. 11.2 Scattering Amplitude of Spinless Particles. 11.3 The Born Approximation. 11.4 Partial Wave Analysis. 11.5 Scattering of Identical Particles. 11.6 Solved Problems. Exercises. A. The Delta Function. A.1 One-Dimensional Delta Function. A.2 Three-Dimensional Delta Function. B. Angular Momentum in Spherical Coordinates. B.1 Derivation of Some General. B.2 Gradient and Laplacianin Spherical Coordinates. B.3 Angular Momentum in Spherical Coordinates. C. Computer Code for Solving the Schrödinger Equation. Index."

Reviews

A Zettili provides a second edition of this textbook on quantum mechanics. The material is suitable for two undergraduate semesters and one graduate level semester.A ( Book News, September 2009)


Author Information

Professor Nouredine Zettili, Physical and Earth Sciences, Jacksonville State, University, Jacksonville, AL, USA Nouredine Zettili received his Ph.D. in 1986 from MIT and is currently Professor of Physics at Jacksonville State University, USA. His research interests include nuclear theory, the many-body problem, quantum mechanics and mathematical physics. He has also published two booklets designed to help students improve their study skills.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List