Quantum Error Correction

Author:   Daniel A. Lidar (University of Southern California) ,  Todd A. Brun (University of Southern California)
Publisher:   Cambridge University Press
ISBN:  

9781139034807


Publication Date:   05 September 2013
Format:   Undefined
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $594.00 Quantity:  
Add to Cart

Share |

Quantum Error Correction


Add your own review!

Overview

Quantum computation and information is one of the most exciting developments in science and technology of the last twenty years. To achieve large scale quantum computers and communication networks it is essential not only to overcome noise in stored quantum information, but also in general faulty quantum operations. Scalable quantum computers require a far-reaching theory of fault-tolerant quantum computation. This comprehensive text, written by leading experts in the field, focuses on quantum error correction and thoroughly covers the theory as well as experimental and practical issues. The book is not limited to a single approach, but reviews many different methods to control quantum errors, including topological codes, dynamical decoupling and decoherence-free subspaces. Basic subjects as well as advanced theory and a survey of topics from cutting-edge research make this book invaluable both as a pedagogical introduction at the graduate level and as a reference for experts in quantum information science.

Full Product Details

Author:   Daniel A. Lidar (University of Southern California) ,  Todd A. Brun (University of Southern California)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press (Virtual Publishing)
ISBN:  

9781139034807


ISBN 10:   1139034804
Publication Date:   05 September 2013
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Undefined
Publisher's Status:   Active
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.

Reviews

Author Information

Daniel A. Lidar is a Professor of Electrical Engineering, Chemistry and Physics at the University of Southern California, and directs the USC Center for Quantum Information Science and Technology. He has worked on quantum control theory for the past 15 years and is well known for his contributions to quantum error correction, in particular the development of decoherence-free subspaces. Todd A. Brun is an Associate Professor of Electrical Engineering, Physics and Computer Science at the University of Southern California. He has worked in the field of quantum information science for nearly 20 years, and has made many influential contributions to quantum error correction, where he is especially known for his work on entanglement-assisted codes.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List