Principles of Scattering and Transport of Light

Author:   Rémi Carminati ,  John C. Schotland (Yale University, Connecticut)
Publisher:   Cambridge University Press
ISBN:  

9781107146938


Pages:   350
Publication Date:   29 July 2021
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $150.05 Quantity:  
Add to Cart

Share |

Principles of Scattering and Transport of Light


Add your own review!

Overview

Light scattering is one of the most well-studied phenomena in nature. It occupies a central place in optical physics, and plays a key role in multiple fields of science and engineering. This volume presents a comprehensive introduction to the subject. For the first time, the authors bring together in a self-contained and systematic manner, the physical concepts and mathematical tools that are used in the modern theory of light scattering and transport, presenting them in a clear, accessible style. The power of these tools is demonstrated by a framework that links various aspects of the subject: scattering theory to radiative transport, radiative transport to diffusion, and field correlations to the statistics of speckle patterns. For graduate students and researchers in optical physics and optical engineering, this book is an invaluable resource on the interaction of light with complex media and the theory of light scattering in disordered and complex systems.

Full Product Details

Author:   Rémi Carminati ,  John C. Schotland (Yale University, Connecticut)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press
Dimensions:   Width: 17.50cm , Height: 2.40cm , Length: 25.00cm
Weight:   0.810kg
ISBN:  

9781107146938


ISBN 10:   1107146933
Pages:   350
Publication Date:   29 July 2021
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Foreword; Preface; 1. Introduction; Part I. Wave Optics: 2. Electromagnetic waves; 3. Geometrical optics; 4. Waves at interfaces; 5. Green's functions and integral representations; 6. Plane-wave expansions; 7. Diffraction; 8. Coherence theory: basic concepts; 9. Coherence theory: propagation of correlations; Part II. Scattering of Waves: 10. Scattering theory; 11. Optical theorem; 12. Scattering in model systems; 13. Renormalized perturbation theory; 14. Wave reciprocity; Part III. Wave Transport: 15. Multiple scattering: average field; 16. Multiple scattering: field correlations and radiative transport; 17. Radiative transport: multiscale theory; 18. Discrete scatterers and spatial correlations; 19. Time-dependent radiative transport and energy velocity; Part IV. Radiative Transport and Diffusions: 20. Radiative transport: boundary conditions and integral representations; 21. Elementary solutions of the radiative transport equation; 22. Problems with planar and azimuthal symmetry; 23. Scattering theory for the radiative transport equation; 24. Diffusion approximation; 25. Diffuse light; 26. Diffuse optics; 27. Scattering of diffuse waves; Part V. Speckle and Interference Phenomena: 28. Intensity statistics; 29. Some properties of Rayleigh statistics; 30. Bulk speckle correlations; 31. Two-frequency speckle correlations; 32. Amplitude and intensity propagators for multiply-scattered fields; 33. Far-field angular speckle correlations; 34. Coherent backscattering; 35. Dynamic light scattering; Part VI. Electromagnetic Waves and Near-field Scattering: 36. Vector waves; 37. Electromagnetic Green's functions; 38. Electric dipole radiation; 39. Scattering of electromagnetic waves; 40. Electromagnetic reciprocity and the optical theorem; 41. Electromagnetic scattering by subwavelength particles; 42. Multiple scattering of electromagnetic waves: Average field; 43. Multiple scattering of electromagnetic waves: radiative transport; 44. Bulk electromagnetic speckle correlations; 45. Near-field speckle correlations; 46. Speckle correlations produced by a point source; Exercises; Index.

Reviews

'This is a fantastic book for those of us who work on mathematical modeling of wave interaction with complex systems. It is written by renowned scientists who have made outstanding contributions to this exciting field. It is the first to comprehensively explore in a systematic manner the modern theory of light scattering and transport in complex systems. It introduces many of the necessary sophisticated mathematical tools and fundamental physical concepts. It nicely links various aspects of the subject: scattering theory to radiative transport, radiative transport to diffusion, and field correlations to the statistics of speckle patterns. It is a truly great pleasure to read. It will undoubtedly become an indispensable aid to researchers in optical physics and optical engineering, and to anyone who wishes to move into the field.' Habib Ammari, ETH Zurich 'This beautiful masterwork of Carminati and Schotland takes us from the foundational laws of physics expressed in Maxwell's equations through to the most quotidian of observable phenomena: light viewed through a murky liquid. On display are the beautiful ideas that the world yields to mathematical dissection and that complex phenomena are the result of accumulated fundamental events. Of course, one finds also the practical, the means to predict and understand images, spectra, the deposition of power, the bending of rays, the scattering of waves and how to connect measurements to the properties of the system being observed. Every step of the way is clearly explained and accessible. I suspect the reader may arrive looking for a particular chapter and find the whole book irresistible.' P. Scott Carney, Institute of Optics, University of Rochester 'The authors state that this book is about scattering and transport of light. Yes, but it is much much much more! If you seek a book that provides a concise, succinct and complete account of physical optics, this is it! This book is a very authoritative text that fills a long-awaited niche. The material covered would typically require thousands of pages, but Carminati and Schotland keep the eye on the ball. They strip tedious details in order to convey the big picture without losing mathematical rigor. The chapters are short and to the point. The references are carefully selected in order to direct the reader to more detailed information. This book is an invaluable resource, not only as a textbook for the classroom, but also as a reference for all optics aficionados.' Lukas Novotny, ETH Zurich 'The book is very clearly written, and each part contains extensive references and exercises, enabling the book to fill its pedagogical role.' Mircea Dragoman, Optics & Photonics News


'This beautiful masterwork of Carminati and Schotland takes us from the foundational laws of physics expressed in Maxwell's equations through to the most quotidian of observable phenomena: light viewed through a murky liquid. On display are the beautiful ideas that the world yields to mathematical dissection and that complex phenomena are the result of accumulated fundamental events. Of course, one finds also the practical, the means to predict and understand images, spectra, the deposition of power, the bending of rays, the scattering of waves and how to connect measurements to the properties of the system being observed. Every step of the way is clearly explained and accessible. I suspect the reader may arrive looking for a particular chapter and find the whole book irresistible.' P. Scott Carney, Institute of Optics, University of Rochester 'This is a fantastic book for those of us who work on mathematical modeling of wave interaction with complex systems. It is written by renowned scientists who have made outstanding contributions to this exciting field. It is the first to comprehensively explore in a systematic manner the modern theory of light scattering and transport in complex systems. It introduces many of the necessary sophisticated mathematical tools and fundamental physical concepts. It nicely links various aspects of the subject: scattering theory to radiative transport, radiative transport to diffusion, and field correlations to the statistics of speckle patterns. It is a truly great pleasure to read. It will undoubtedly become an indispensable aid to researchers in optical physics and optical engineering, and to anyone who wishes to move into the field.' Habib Ammari, ETH Zurich


'This is a fantastic book for those of us who work on mathematical modeling of wave interaction with complex systems. It is written by renowned scientists who have made outstanding contributions to this exciting field. It is the first to comprehensively explore in a systematic manner the modern theory of light scattering and transport in complex systems. It introduces many of the necessary sophisticated mathematical tools and fundamental physical concepts. It nicely links various aspects of the subject: scattering theory to radiative transport, radiative transport to diffusion, and field correlations to the statistics of speckle patterns. It is a truly great pleasure to read. It will undoubtedly become an indispensable aid to researchers in optical physics and optical engineering, and to anyone who wishes to move into the field.' Habib Ammari, ETH Zurich 'This beautiful masterwork of Carminati and Schotland takes us from the foundational laws of physics expressed in Maxwell's equations through to the most quotidian of observable phenomena: light viewed through a murky liquid. On display are the beautiful ideas that the world yields to mathematical dissection and that complex phenomena are the result of accumulated fundamental events. Of course, one finds also the practical, the means to predict and understand images, spectra, the deposition of power, the bending of rays, the scattering of waves and how to connect measurements to the properties of the system being observed. Every step of the way is clearly explained and accessible. I suspect the reader may arrive looking for a particular chapter and find the whole book irresistible.' P. Scott Carney, Institute of Optics, University of Rochester 'The authors state that this book is about scattering and transport of light. Yes, but it is much much much more! If you seek a book that provides a concise, succinct and complete account of physical optics, this is it! This book is a very authoritative text that fills a long-awaited niche. The material covered would typically require thousands of pages, but Carminati and Schotland keep the eye on the ball. They strip tedious details in order to convey the big picture without losing mathematical rigor. The chapters are short and to the point. The references are carefully selected in order to direct the reader to more detailed information. This book is an invaluable resource, not only as a textbook for the classroom, but also as a reference for all optics aficionados.' Lukas Novotny, ETH Zurich


Author Information

Rémi Carminati is Professor of Physics at ESPCI Paris - PSL, before which he held a faculty position at Ecole Centrale Paris. He was awarded the Fabry-de-Gramont prize of the French Optical Society, and is a Fellow of the Optical Society of America. John C. Schotland is Professor of Mathematics at Yale University. He has held faculty positions at University of Pennsylvania and University of Michigan, where he was the founding director of the Michigan Center for Applied and Interdisciplinary Mathematics.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List