|
|
|||
|
||||
OverviewA hands-on resource designed to teach the mathematics of signals and systems with MATLAB™ In this newly revised second edition of Practical Signals Theory with MATLAB™ Applications, Richard Tervo delivers an articulate presentation of the mathematics underlying real world engineering applications and everyday electronic devices. The new edition provides extended coverage of communication systems—including digital and spread spectrum communications—as well as a new introductory chapter on using MATLAB™ as a tool to visualize the mathematics of signals and systems. The text contains numerous hands-on examples and expanded end-of-chapter exercises. It is a one-stop reference for signals and systems, explaining aspects of commonplace signal types, orthogonality and signal decomposition, transformations, and the graphical presentation of calculations and results. Readers will also find: A solid introduction to the mathematics of continuous and discrete signals represented in time and frequency domains Thorough coverage of the classic Fourier, Laplace and z-transforms, and their many applications New end-of-chapter worked exercises, a variety of in-line study questions with answers and easily reproducible MATLAB™ code demonstrations Bonus material on related applications in different fields of study and a companion website designed to support additional learning Perfect for undergraduate and graduate students of signals and systems, signals theory, and related areas of electrical engineering, Practical Signals Theory with MATLAB™ Applications will also benefit researchers and professors in the field of system design and signal processing. Full Product DetailsAuthor: Richard J. Tervo (University of New Brunswick, Canada)Publisher: John Wiley & Sons Inc Imprint: John Wiley & Sons Inc Edition: 2nd edition Dimensions: Width: 27.40cm , Height: 3.30cm , Length: 21.60cm Weight: 1.179kg ISBN: 9781394266555ISBN 10: 1394266553 Pages: 480 Publication Date: 09 February 2026 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Available To Order We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsPreface………………………………………………………………. xxi Pedagogy ……………………………………………………………xxi Organization……………………………………………………….xxiv Chapter 1. Practical MATLAB with Signals Theory ……………….. xxiv Chapter 2. Introduction to Signals and Systems …………………..xxv Chapter 3. Classi_cation of Signals ……………………………………xxv Chapter 4. Linear Systems ………………………………………………..xxv Chapter 5. The Fourier Series …………………………………………….xxv Chapter 6. The Fourier Transform ………………………………………xxvi Chapter 7. Practical Fourier Transforms ……………………………..xxvi Chapter 8. The Laplace Transform ……………………………………..xxvi Chapter 9. Discrete Signals ………………………………………………xxvi Chapter 10. The z-Transform …………………………………………….xxvii Chapter 11. Communications Systems……………………………… xxvii 0.1 Useful Information (inside cover / endpaper)………………… xxviii 0.1.1 Identities ……………………………………………… xxviii 0.1.2 De_nite Integrals …………………………………….xxviii 0.1.3 In_nite Series …………………………………………xxix 0.1.4 Orthogonality …………………………………………xxix 0.1.5 Signal Inner Product ………………………………..xxix 0.1.6 Convolution ……………………………………………xxix 0.1.7 Fourier Series ………………………………………….xxix 0.1.8 Complex Fourier Series……………………………..xxx 0.1.9 Fourier Transform …………………………………….xxx 0.1.10 Laplace Transform …………………………………xxx 0.1.11 z-Transform …………………………………………..xxx 0.2 List of Acronyms ………………………………………..xxxii 0.2.1 Communications Acronyms…………………… xxxiii 1 Practical MATLAB with Signals Theory 1 Learning Objectives ………………………………………………2 1.1 Introduction ……………………………………………………2 1.1.1 Accessing MATLAB ………………………………………..2 1.1.2 Learning MATLAB ………………………………………….4 1.1.3 The MATLAB Desktop……………………………………..4 1.1.4 Help with MATLAB …………………………………………5 1.1.5 Numeric Variables for Signals Theory ……………….6 1.1.6 MATLAB Arrays, Matrices, Vectors ……………………6 1.1.7 Recording a MATLAB session …………………………..9 1.2 Visualizing Functions ………………………………………..9 1.2.1 Making a Rough Sketch of a Function ……………….10 1.2.2 Plotting a Function by Hand ……………………………10 1.2.3 Plotting a Function with MATLAB ……………………..11 1.2.4 Enhanced Plotting Functions ………………………….13 1.3 MATLAB M-Files ……………………………………………….14 1.3.1 Creating a MATLAB Function ……………………………15 1.3.2 Anonymous Functions ……………………………………16 1.4 Numerical Integration ……………………………………….17 1.4.1 Generalized Numerical Integration …………………..19 1.5 The for loop ……………………………………………………..20 1.6 Conditional and Logical Expressions …………………..20 1.7 Piecewise Continuous Signals ……………………………22 1.8 Complex Numbers in MATLAB …………………………….24 1.8.1 Representation of Complex Numbers ………………..24 1.8.2 Euler's Formula ………………………………………………25 1.8.3 The Complex Plane …………………………………………26 Viewing a Function from Different Perspectives ………………28 1.9 Conclusions ………………………………………………………..29 1.10 Worked Problems ……………………………………………….30 1.11 End of Chapter Exercises ……………………………………..33 Bibliography ………………………………………………………………36 2 Introduction to Signals and Systems 37 Learning Objectives ……………………………………………………37 2.1 Introduction …………………………………………………………38 2.1.1 What is a Signal? ……………………………………………….39 2.1.2 What is a System? ……………………………………………..39 2.2 Introduction to Signal Manipulation ………………………...41 2.2.1 Amplification ……………………………………..42 2.2.2 Shifting ……………………………………………..42 2.2.3 Scaling ………………………………………………44 2.2.4 Linear Combination ……………………………..46 2.2.5 Addition and Multiplication of Signals ……………….4 2.2.6 Visualizing Signals - An Important Skill ……………..49 2.3 Basic Signals …………………………………………………..50 2.3.1 The Unit Rectangle : rect(t) ……………………………..50 2.3.2 The Unit Step u(t) ………………………………………….52 2.3.3 The Exponential ekt ………………………………………..55 2.3.4 The Unit Impulse δ(t) ……………………………………..56 2.3.5 Plotting the Impulse Aδ(t-x) …………………………….60 2.4 The Sinusoidal Signal ……………………………………….61 2.4.1 The One-Sided Cosine Representation……………. 63 2.4.2 Phase Change - ……………………………………………65 Phase Change vs. Time Shift ………………………………….65 2.4.3 Sine vs. Cosine …………………………………………….68 2.5 Conclusions ………………………………………………………69 2.6 Worked Problems ……………………………………………….69 2.7 End of Chapter Exercises ……………………………………..72 Bibliography …………………………………………………………….76 3 Classification of Signals 79 Learning Objectives ………………………………………………79 3.1 Introduction ……………………………………………………80 3.2 Odd and Even Signals ………………………………………80 3.2.1 Combining Odd and Even signals …………………….82 3.2.2 The constant value s(t) = k ………………………………84 3.3 Periodic Signals ……………………………………………….85 3.3.1 DC Component in Periodic Signals …………………..86 3.3.2 Sinusoids and Rectifiers ………………………………….86 3.3.3 Square Wave …………………………………………89 3.3.4 Sawtooth Wave ……………………………………..89 3.3.5 Triangle wave …………………………………………89 3.3.6 Pulse Train ……………………………………………..91 3.3.7 Rectangular Pulse Train ……………………………91 3.3.8 Impulse Train ………………………………………….93 3.3.9 Trigonometric Identities …………………………93 3.3.10 Sinusoidal Multiplication …………………………95 Modulation Property …………………………95 Dial Tone Generator …………………………97 Squaring the Sinusoid …………………………99 3.4 Energy and Power Signals …………………………101 3.4.1 Periodic Signals = Power Signals ………………………… 104 Vrms is not always A/√2 …………………………105 3.4.2 Comparing Signal Power: The Decibel (dB) …………………………105 3.5 Complex Signals …………………………108 3.6 Discrete Time Signals …………………………111 3.7 Random Signals …………………………113 3.8 Conclusions …………………………115 3.9 Worked Problems …………………………115 3.10 End of Chapter Exercises …………………………118 Bibliography …………………………127 4 Linear Systems 129 Learning Objectives …………………………129 4.1 Introduction …………………………130 4.2 Definition of a Linear System …………………………130 4.2.1 Superposition …………………………131 4.2.2 Example 1: Zero-State Response …………………………132 4.2.3 Example 2: Operating in a linear region …………………………133 4.2.4 Example 3: Mixer …………………………135 4.2.5 Linear Time-Invariant (LTI) Systems …………………………136 4.2.6 Bounded Input, Bounded Output …………………………138 4.2.7 System Behavior as a Black Box …………………………139 4.3 LTI System Response Function h(t) …………………………139 4.4 Convolution …………………………140 4.4.1 The Convolution Integral …………………………141 4.4.2 Convolution is Commutative …………………………144 4.4.3 Convolution is Associative …………………………145 4.4.4 Convolution is Distributive over Addition …………………………147 4.4.5 Evaluation of the Convolution Integral …………………………147 Graphical Convolution 1: Rectangle with Itself …………………………148 4.4.6 Convolution Properties …………………………150 Graphical Convolution 2: Two Rectangles …………………………151 Graphical Convolution 3: Rectangle and Exponential Decay…………………………152 4.4.7 Convolution in MATLAB …………………………154 4.5 Determining h(t) in an Unknown System …………………………157 4.5.1 The Unit Impulse δ(t) Test Signal …………………………157 4.5.2 Convolution and Signal Decomposition …………………………158 Convolution and Periodic Signals …………………………160 4.5.3 An Ideal Distortionless System …………………………160 Deconvolution …………………………161 4.6 Causality …………………………162 4.6.1 Causality and Zero Input Response …………………………164 4.7 Combined Systems …………………………164 4.8 Convolution and Random Numbers …………………………166 4.9 Useful Hints and Help with MATLAB …………………………168 4.10 Chapter Summary …………………………169 4.11 Conclusions …………………………170 4.12 Worked Problems …………………………170 4.13 End of Chapter Exercises …………………………173 Bibliography ………………………… 180 5 The Fourier Series 181 Learning Objectives …………………………181 Chapter Overview …………………………182 5.1 Introduction …………………………182 5.2 Expressing Signals by Components …………………………182 5.2.1 The Spectrum Analyzer …………………………184 5.2.2 Approximating a Signal s(t) by Another …………………………184 5.2.3 Estimating One Signal by Another …………………………187 5.3 Part One - Orthogonal Signals …………………………189 5.4 Orthogonality ………………………… 190 5.4.1 An Orthogonal Signal Space …………………………191 5.4.2 The Signal Inner Product Formulation …………………………193 5.4.3 Complete Set of Orthogonal Signals …………………………195 5.4.4 What if a Complete Set is not Present? …………………………196 5.4.5 An Orthogonal Set of Signals …………………………196 5.5 Part Two - The Fourier Series …………………………204 5.5.1 The Orthogonal Signals {sin(2ϖmƒot); cos(2ϖnƒot)} …………………………204 5.5.2 The Fourier Series - An Orthogonal Set? …………………………205 5.6 Computing Fourier Series Components …………………………209 5.6.1 Fourier Series Approximation to an Odd Square Wave ……210 5.6.2 Zero-Frequency (DC) Component …………………………211 5.6.3 Fundamental Frequency Component …………………………212 5.6.4 Higher Order Components …………………………213 5.6.5 Frequency Spectrum of the Square Wave s(t) …………………………215 5.7 Odd and Even Square Waves …………………………217 5.7.1 The Fourier Series Components of an Even Square Wave…………………………219 5.8 Gibb's Phenomenon …………………………221 5.9 Setting-Up the Fourier Series Calculation …………………………224 5.9.1 Appearance of Pulse Train Frequency Components …………………………226 5.10 Some Common Fourier Series …………………………231 5.11 Practical Harmonics …………………………232 5.11.1 Audio Ampli_er Specs - Total Harmonic Distortion …………………………232 5.11.2 The CB Radio Booster …………………………233 5.12 Part Three: The Complex Fourier Series …………………………235 5.12.1 Not all Signals are Even or Odd…………………………235 5.13 The Complex Fourier Series …………………………237 5.13.1 Complex Fourier Series - The Frequency Domain …………………………238 5.13.2 Comparing the Real and Complex Fourier Series …………………………243 5.13.3 Magnitude and Phase …………………………244 5.14 Complex Fourier Series Components …………………………245 5.14.1 Real Signals and the Complex Fourier Series …………………………247 5.14.2 Stretching and Squeezing: Time vs. Frequency …………………………248 5.14.3 Shift in Time …………………………249 5.14.4 Change in Amplitude …………………………250 5.14.5 Power in Periodic Signals …………………………250 Find the Total Power in s(t) = Acos(t) + B sin(t) …………………………251 5.14.6 Parseval's Theorem for Periodic Signals …………………………252 5.15 Properties of the Complex Fourier Series …………………………258 5.16 Analysis of a DC Power Supply …………………………258 5.16.1 The DC Component …………………………259 5.16.2 An AC-DC Converter …………………………260 5.16.3 Vrms is always greater than or equal to Vdc …………………………261 5.16.4 Fourier Series: The Full-wave Rectifier …………………………261 5.16.5 Complex Fourier series components Cn …………………………264 Power in the Fundamental Frequency 120 Hz ………………………………267 5.17 The Fourier Series with MATLAB ……………………………………………268 5.17.1 Finding Fourier Series Components ………………………………………268 A full-wave rectified cosine (60 Hz) …………………………………………………..269 5.17.2 Effective use of the Fast Fourier Transform………………..272 5.18 Conclusions …………………………………………………..276 5.19 Worked Problems …………………………………………………..277 5.20 End of Chapter Exercises …………………………………………………..281 Bibliography …………………………………………………..289 6 The Fourier Transform 291 Learning Objectives …………………………………………………..291 6.1 Introduction …………………………………………………..292 6.1.1 A Fresh Look at the Fourier Series …………………………………………………..292 Periodic and Non-Periodic Signals …………………………………………………..293 6.1.2 Approximating a Non-Periodic Signal Over All Time …………………………………295 6.1.3 Definition of the Fourier Transform …………………………………………………..299 6.1.4 Existence of the Fourier Transform …………………………………………………..300 6.1.5 The Inverse Fourier Transform …………………………………………………..301 6.2 Properties of the Fourier Transform …………………………………………………..302 6.2.1 Linearity of the Fourier Transform …………………………………………302 6.2.2 Value of the Fourier transform at the Origin …………………………304 6.2.3 Odd and Even Functions and the Fourier Transform ……………………305 6.3 The Rectangle Signal ………………………………………………….. 307 Alternate Solution …………………………………………………..308 6.4 The Sinc Function …………………………………………………..309 6.4.1 Expressing a Function in Terms of sinc(t) …………………………………………312 6.4.2 The Fourier Transform of a General Rectangle ………………………………313 6.5 Signal Manipulations: Time and Frequency ………………………………………318 6.5.1 Amplitude Variations …………………………………………………..318 6.5.2 Stretch and Squeeze: The Sinc Function …………………………………………………..318 6.5.3 The Scaling Theorem…………………………………………………..319 6.5.4 Testing the Limits …………………………………………………..321 6.5.5 A Shift in Time …………………………………………………..323 6.5.6 The Shifting Theorem …………………………………………………..324 6.5.7 The Fourier Transform of a Shifted Rectangle …………………………………326 Magnitude of G(ƒ) …………………………………………………..326 Phase of G(ƒ) …………………………………………………..326 6.5.8 Impulse Series - The Line Spectrum …………………………………………………..328 6.5.9 Shifted Impulse δ(ƒ – ƒo) …………………………………………………..328 6.5.10 Fourier Transform of a Periodic Signal …………………………………………………..329 6.6 Fourier Transform Pairs …………………………………………………..332 6.6.1 The Illustrated Fourier Transform …………………………………………………..334 6.7 Rapid Changes vs. High Frequencies …………………………………………………..335 6.7.1 Derivative Theorem …………………………………………………..336 6.7.2 Integration Theorem …………………………………………………..338 6.8 Conclusions …………………………………………………..339 6.9 Worked Problems …………………………………………………..340 6.10 End of Chapter Exercises …………………………………………………..342 Bibliography …………………………………………………..348 7 Practical Fourier Transforms 349 7.1 Introduction …………………………………………………..349 Learning Objectives …………………………………………………..349 7.2 Convolution: Time and Frequency …………………………………………………..350 The Logarithm Domain …………………………………………………..350 7.2.1 Simplifying the Convolution Integral ……………………………………351 7.3 Transfer Function of a Linear System ………………………………………356 7.3.1 Impulse Response: The Frequency Domain ……………………………357 7.3.2 Frequency Response Curve …………………………………………………..359 7.4 Energy in Signals: Parseval's Theorem for the Fourier Transform ………………360 7.4.1 Energy Spectral Density …………………………………………………..361 7.5 Data Smoothing and the Frequency Domain ………………………………363 7.6 Ideal Filters …………………………………………………..365 7.6.1 The Ideal Low-Pass Filter is not Causal …………………………………………………..368 7.7 A Real Low-Pass Filter …………………………………………………..370 MATLAB Example 1: First Order Filter ………………………………………………….. 376 7.8 The Modulation Theorem …………………………………………………..378 7.8.1 A Voice Privacy System …………………………………………………..379 Spectral Inversion …………………………………………………..380 7.9 Periodic Signals and the Fourier Transform ……………………384 7.9.1 The Impulse Train …………………………………………………..385 7.9.2 General Appearance of Periodic Signals …………………………………………………..387 7.9.3 The Fourier Transform of a Square wave ………………………………387 Changing the Pulse Train Appearance …………………………………………389 7.9.4 Other Periodic Waveforms …………………………………………………..390 7.10 The Analog Spectrum Analyzer …………………………………………………..390 7.11 Conclusions …………………………………………………..392 7.12 Worked Problems …………………………………………………..392 7.13 End of Chapter Exercises …………………………………………………..397 Bibliography …………………………………………………..406 8 The Laplace Transform 407 Learning Objectives …………………………………………………..408 8.1 Introduction …………………………………………………..408 8.2 The Laplace Transform …………………………………………………..409 8.2.1 The Frequency Term ejwt …………………………………………………..411 8.2.2 The Exponential Term eσt …………………………………………………..412 8.2.3 The s-domain …………………………………………………..412 8.3 Exploring the s-domain …………………………………………………..413 8.3.1 Poles and Zeros …………………………………………………..414 8.3.2 A Pole at the origin …………………………………………………..414 8.3.3 Decaying Exponential …………………………………………………..417 8.3.4 A Sinusoid …………………………………………………..420 8.3.5 A Decaying Sinusoid …………………………………………………..422 8.3.6 An Unstable System …………………………………………………..424 8.4 Visualizing the Laplace Transform ……………………………………………424 8.4.1 First Order Low-pass Filter …………………………………………………..425 8.4.2 Pole Position Determines Frequency Response ………………………428 8.4.3 Second Order Low-pass Filter …………………………………………………..431 8.4.4 Two-Sided Laplace Transform …………………………………………………..435 8.4.5 The Bode Diagram …………………………………………………..437 8.4.6 Calculating the Laplace Transform …………………………………………………..442 8.4.7 System Analysis in MATLAB …………………………………………………..443 8.5 Properties of the Laplace Transform …………………………………………………..447 8.6 Differential Equations …………………………………………………..448 8.6.1 Solving a Differential Equation …………………………………………………..449 8.6.2 Transfer Function as Differential Equations ……………………………………………452 8.7 Laplace Transform Pairs …………………………………………………..452 8.7.1 The Illustrated Laplace Transform …………………………………………………..454 8.8 Circuit Analysis with the Laplace Transform ………………………………………455 8.8.1 Voltage Divider …………………………………………………..457 8.8.2 A First-Order Low-pass Filter ………………………………………………….. 458 8.8.3 A First-Order High-pass Filter …………………………………………………..462 8.8.4 A Second Order Filter …………………………………………………..464 8.9 State Variable Analysis …………………………………………………..475 8.9.1 State Variable Analysis - First Order System ………………………………475 8.9.2 First Order State Space Analysis with MATLAB …………………………….478 8.9.3 State Variable Analysis - Second Order System ……………………………480 8.9.4 Matrix Form of the State Space Equations ……………………………………482 8.9.5 Second Order State Space Analysis with MATLAB …………………………484 8.9.6 Differential Equation …………………………………………………..485 8.9.7 State Space and Transfer Functions with MATLAB …………………………487 8.10 Conclusions …………………………………………………..489 8.11 Worked Problems …………………………………………………..490 8.12 End of Chapter Exercises …………………………………………………..495 Bibliography …………………………………………………..505 9 Discrete Signals 507 9.1 Introduction …………………………………………………..507 Learning Objectives …………………………………………………..507 9.2 Discrete Time vs. Continuous Time Signals …………………………………508 9.3 A Discrete Time Signal …………………………………………………..509 9.3.1 Digital Signal Processing …………………………………………………..510 9.3.2 A Periodic Discrete Time Signal …………………………………………………..513 9.4 Data Collection and Sampling Rate …………………………………………………..513 9.4.1 The Selection of a Sampling Rate …………………………………………………..513 9.4.2 Bandlimited Signal …………………………………………………..515 9.4.3 Theory of Sampling …………………………………………………..516 9.4.4 The Sampling Function …………………………………………………..516 9.4.5 Recovering a Waveform from Samples ……………………………………518 9.4.6 A Practical Sampling Signal ……………………………………………519 9.4.7 Minimum Sampling Rate …………………………………………………..519 9.4.8 Nyquist Sampling Rate …………………………………………………..521 9.4.9 The Nyquist Sampling Rate is a Theoretical Minimum ……………………………523 9.4.10 Sampling Rate and Alias Frequency …………………………………………………..525 9.4.11 Practical Aliasing …………………………………………………..528 9.4.12 Analysis of Aliasing ………………………………………………….. 531 9.4.13 Anti-Alias Filter …………………………………………………533 9.5 Introduction to Digital Filtering …………………………………………534 9.5.1 Impulse Response Function …………………………………………535 9.5.2 A Discrete Response Function ……………………………………… 535 9.5.3 Delay Blocks are a Natural Consequence of Sampling ………..539 9.5.4 General Digital Filtering …………………………………………………540 9.5.5 The Fourier Transform of Sampled Signals …………………………..542 9.5.6 The Discrete Fourier Transform (DFT) …………………………………543 9.5.7 A Discrete Fourier Series …………………………………………………..546 9.5.8 Computing the Discrete Fourier Transform (DFT) ………548 9.5.9 The Fast Fourier Transform (FFT) ……………………548 9.6 Illustrative Examples ………………………………………550 The FFT (fft) and Inverse FFT (ifft) ……………………………553 9.6.1 FFT and Sample Rate ……………………………………556 9.6.2 Practical DFT Issues ……………………………………556 9.7 Filtering Application with MATLAB ……………………563 9.7.1 Fourier Analysis ……………………………………………563 9.7.2 System Response …………………………………………564 9.7.3 Check Calculation ……………………………………… 565 9.8 Conclusions …………………………………………...566 9.9 Worked Problems ……………………………………567 9.10 End of Chapter Exercises …………………………572 Bibliography …………………………………………………..579 10 The z-Transform 581 10.1 Introduction ……………………………………………581 Learning Objectives …………………………………………581 10.2 The z-Transform …………………………………………………..582 10.2.1 Fourier Transform, Laplace Transform, z-transform ………………582 10.2.2 Defnition of the z-Transform ………………………………………585 10.2.3 The z-Plane and the Fourier Transform ………………………………………587 10.3 Calculating the z-Transform ……………………………………588 10.3.1 Unit Step u[n] …………………………………………………..590 10.3.2 Exponential an u[n] …………………………………………………592 10.3.3 Sinusoid cos(nωo) u[n] and sin(nωo) u[n] ………………………594 10.3.4 Differentiation …………………………………………………..596 10.3.5 The Effect of Sampling Rate …………………………………………………..597 10.4 A Discrete Time Laplace Transform ………………………………598 10.5 Properties of the z-Transform ………………………………………602 10.6 z-Transform Pairs …………………………………………………..602 10.7 Transfer Function of a Discrete Linear System ……………………603 10.8 MATLAB Analysis with the z-transform ………………………………603 10.8.1 First Order Low-pass Filter …………………………………604 10.8.2 Pole-zero Plot …………………………………………………..606 10.8.3 Bode diagram …………………………………………………..608 10.8.4 Impulse Response …………………………………………………..609 10.8.5 Calculating Frequency Response ………………………………..610 10.8.6 Pole Position Determines Frequency Response …………….611 10.9 Digital Filtering - FIR Filter ……………………………………………612 10.9.1 A One Pole FIR Filter …………………………………………………..614 10.9.2 A Two Pole FIR Filter …………………………………………………..615 10.9.3 Higher Order FIR Filters …………………………………………………..616 10.10Digital Filtering - IIR Filter …………………………………………………..621 10.10.1A One Pole IIR Filter …………………………………………………..621 10.10.2 IIR vs. FIR …………………………………………………..624 10.10.3 Higher Order IIR Filters …………………………………………………..626 10.10.4 Combining FIR and IIR Filters …………………………………………627 10.11Conclusions …………………………………………………..627 10.12Worked Problems …………………………………………………..628 10.13End of Chapter Exercises …………………………………………………..631 11 Communication Systems 637 Learning Objectives …………………………………………………..637 11.1 Introduction …………………………………………………..638 11.1.1 A Baseband Signal m(t) …………………………………………………..638 11.1.2 The need for a Carrier Signal …………………………………………………..639 11.1.3 A Carrier Signal c(t) …………………………………………………..640 11.1.4 Modulation Techniques …………………………………………………..640 11.1.5 The Radio Spectrum …………………………………………………..642 11.2 Amplitude Modulation …………………………………………………..644 11.2.1 Double Sideband Transmitted Carrier - (DSB-TC) …………………………645 11.2.2 Demodulation of AM DSB-TC Signals …………………………………650 11.2.3 Graphical Analysis …………………………………………………..651 11.2.4 AM Demodulation - Diode Detector …………………………………………654 11.2.5 Examples of Diode Detection …………………………………………………657 11.3 Suppressed Carrier Transmission …………………………………………………658 11.3.1 Demodulation of Single Sideband Signals ……………………………………659 11.3.2 Percent Modulation and Overmodulation ……………………………………662 11.4 Superheterodyne Receiver …………………………………………………..662 11.4.1 An Experiment with Intermediate Frequency ………………………666 11.4.2 When Receivers become Transmitters …………………………….668 11.4.3 Image Frequency …………………………………………………..668 11.4.4 Beat Frequency Oscillator ……………………………………….670 11.5 Digital Communications …………………………………………………..670 11.5.1 Modulation Methods …………………………………………………..672 11.5.2 Morse Code …………………………………………………..672 11.5.3 Amplitude Shift Keying (ASK) …………………………………………………..676 11.5.4 Frequency Shift Keying (FSK) …………………………………………………..677 11.6 Phase Shift Keying (PSK) …………………………………………………..678 11.6.1 Differential Coding …………………………………………………..679 11.6.2 Quadrature Amplitude Modulation (QAM) …………………………………………681 11.7 Spread Spectrum Systems …………………………………………………..683 11.7.1 Introduction …………………………………………………..683 11.7.2 Pseudorandom Noise …………………………………………………..686 11.7.3 Encoding Bits in DSSS …………………………………………693 11.7.4 Spectral Properties of a Pseudo-Random Sequence …693 11.7.5 Code Division Multiple Access (CDMA) …………695 11.8 Conclusions …………………………………………………..700 11.9 Worked Problems ……………………………………700 11.10End of Chapter Exercises …………………………703 Bibliography …………………………………………………..706 A Reference Tables 707 A.1 Fourier Transform …………………………………………707 A.1.1 Fourier Transform Theorems …………………………707 A.2 Laplace Transform …………………………………………709 A.2.1 Laplace Transform Theorems ………………………..709 A.3 z-Transform …………………………………………………..711 A.3.1 z-Transform Theorems ………………………………….711 B The Illustrated Fourier Transform 713 C The Illustrated Laplace Transform 725 D The Illustrated z-Transform 735 E MATLAB Reference Guide 743 E.1 De_ning Signals ………………………………………………743 E.1.1 MATLAB Variables ………………………………………..743 E.1.2 The Time Axis ……………………………………………..744 E.1.3 Common Signals…………………………………………. 745 E.2 Complex Numbers ………………………………………….745 E.3 Plot Commands ………………………………………………747 E.4 Signal Operations …………………………………………… 748 E.5 Defining Systems ………………………………………………. 749 E.5.1 System Definition …………………………………….750 E.5.2 System Analysis ……………………………………...752ReviewsAuthor InformationRichard J. Tervo, PhD, is a retired Professor of Electrical and Computer Engineering at the University of New Brunswick, Canada. For over 30 years, he taught signals and communications courses at the undergraduate and graduate levels. He is an expert in teaching the mathematical foundations of signal behavior. Tab Content 6Author Website:Countries AvailableAll regions |
||||