Plasma and Fluid Turbulence: Theory and Modelling

Author:   A. Yoshizawa ,  S.I. Itoh ,  K. Itoh
Publisher:   Taylor & Francis Ltd
ISBN:  

9780750308717


Pages:   480
Publication Date:   12 November 2002
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $275.00 Quantity:  
Add to Cart

Share |

Plasma and Fluid Turbulence: Theory and Modelling


Add your own review!

Overview

Full Product Details

Author:   A. Yoshizawa ,  S.I. Itoh ,  K. Itoh
Publisher:   Taylor & Francis Ltd
Imprint:   Institute of Physics Publishing
Dimensions:   Width: 15.60cm , Height: 3.00cm , Length: 23.40cm
Weight:   0.975kg
ISBN:  

9780750308717


ISBN 10:   0750308710
Pages:   480
Publication Date:   12 November 2002
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Preface, Acknowledgments, PART I GENERAL INTRODUCTION, 1 Introductory Remarks, 2 Structure Formation in Fluids and Plasmas, 2.1 Flow in a Pipe, 2.1.1 Enhancement of Mixing Effects Due to Turbulence, 2.1.2 Mean-Flow Structure Formation in Pipe Flows, 2.2 Magnetic-Field Generation by Turbulent Motion, 2.3 Collimation of Jets, 2.4 Magnetic Confinement of Plasmas, 2.4.1 Magnetic Confinement and Toroidal Plasmas, 2.4.2 Flows in Toroidal Plasmas, 2.4.3 Topological Change of Magnetic Surfaces, 2.5 Nonlinearity in Transport and Structural Transition, 2.5.1 Nonlinear Gradient–Flux Relation, 2.5.2 Bifurcation in Flow, 2.5.3 Bifurcation in Structural Formation, References, PART II FLUID TURBULENCE, Nomenclature, 3 Fundamentals of Fluid Turbulence, 3.1 Fundamental Equations, 3.2 Averaging Procedures, 3.3 Ensemble-Mean Equations, 3.3.1 Mean-Field Equations, 3.3.2 Turbulence Equations, 3.4 Homogeneous Turbulence, 3.4.1 Fundamental Concepts, 3.4.2 Kolmogorov’s Scaling Law, 3.4.3 Failure of Kolmogorov’s Scaling, 3.4.4 Two-Dimensional Turbulence, 3.5 Production and Diffusion Characteristics of Turbulent Energy, References, 4 Heuristic Turbulence Modelling, 4.1 Approaches to Turbulence, 4.2 Algebraic Turbulence Modelling, 4.2.1 Modelling of Reynolds Stress, 4.2.2 Modelling of Heat Flux, 4.2.3 Modelling of Turbulence Equations, 4.2.4 The Simplest Algebraic Model, 4.2.5 Investigation into Some Representative Turbulent Flows, 4.3 Second-Order Modelling, 4.3.1 Modelling of Pressure–Strain Term, 4.3.2 Modelling of Dissipation and Transport Terms, 4.3.3 The Simplest Second-Order Model and its Relationship with a Higher-Order Algebraic Model, 4.4 A Variational-Method Model, 4.4.1 Helicity and Vortical-Structure Persistence, 4.4.2 Derivation of the Vorticity Equation Using the Variational Method, 4.4.3 Analysis of Swirling Pipe Flow, 4.4.4 Swirl Effect on Reynolds Stress, 4.5 Subgrid-Scale Modelling, 4.5.1 Filtering Procedure, 4.5.2 Filtered Equations, 4.5.3 Fixed-Parameter Modelling, 4.5.4

Reviews

Author Information

Akira Yoshizawa Institute of Industrial Science, University of Tokyo, Japan Sanae-I Itoh Research Institute for Applied Mechanics, Kyushu University, Japan Kimitaka Itoh National Institute for Fusion Science, Toki, Japan

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List