|
|
|||
|
||||
OverviewMost physical phenomena exhibit spatiotemporal features interpreted as wave dynamics. Various diagnostic technologies use some waves such as light, sound, and microwaves. A proper understanding of wave dynamics is essential to interpret these physical phenomena and apply the technology efficiently. However, the physics underlying the wave-like behavior of real-world systems is not necessarily straightforward. Often the mathematical description of these physics is hard to understand. Consequently, the interpretation of diagnostic signals is not simple, which sometimes leads to an incorrect diagnosis. This book aims to solve these problems by describing the related topics on a sound physical basis and explaining them intuitively for easy digestion. Presents real-world examples of oscillatory and wave systems to help the reader understand wave dynamics while explaining numerical methods. Explains the physics and mathematics underlying wave dynamics in intuitive fashions. Full Product DetailsAuthor: Sanichiro YoshidaPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 2025 ed. ISBN: 9783031603532ISBN 10: 3031603532 Pages: 138 Publication Date: 13 August 2024 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsGeneral discussion.- Mathematical.- Oscillation Dynamics.- Wave Dynamics.- Properties of Waves.- Numeric Methods.ReviewsAuthor InformationSanichiro Yoshida received his undergraduate and graduate degrees from Keio University, Japan, in 1980 and 1986, respectively. From 1981 - to 1982, he worked for Dr. Author V. Phelps at the University of Colorado at Boulder as a student researcher, where he learned the basics of conducting scientific research. He has conducted experimental and theoretical research on various topics, such as developments and applications of high-power lasers, precise measurement with optical interferometry, optical and acoustic characterization of material strength, and development of a comprehensive theory on deformation and fracture of solids. Currently, he works at Southeastern Louisiana University as a Professor of Physics. Tab Content 6Author Website:Countries AvailableAll regions |