Petroleum Reservoir Engineering Practice

Author:   Nnaemeka Ezekwe
Publisher:   Pearson Education (US)
ISBN:  

9780137152834


Pages:   816
Publication Date:   14 October 2010
Replaced By:   9780133807424
Format:   Hardback
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Our Price $369.60 Quantity:  
Add to Cart

Share |

Petroleum Reservoir Engineering Practice


Add your own review!

Overview

The Complete, Up-to-Date, Practical Guide to Modern Petroleum Reservoir Engineering This is a complete, up-to-date guide to the practice of petroleum reservoir engineering, written by one of the world’s most experienced professionals. Dr. Nnaemeka Ezekwe covers topics ranging from basic to advanced, focuses on currently acceptable practices and modern techniques, and illuminates key concepts with realistic case histories drawn from decades of working on petroleum reservoirs worldwide.   Dr. Ezekwe begins by discussing the sources and applications of basic rock and fluid properties data. Next, he shows how to predict PVT properties of reservoir fluids from correlations and equations of state, and presents core concepts and techniques of reservoir engineering. Using case histories, he illustrates practical diagnostic analysis of reservoir performance, covers essentials of transient well test analysis, and presents leading secondary and enhanced oil recovery methods.   Readers will find practical coverage of experience-based procedures for geologic modeling, reservoir characterization, and reservoir simulation. Dr. Ezekwe concludes by presenting a set of simple, practical principles for more effective management of petroleum reservoirs.   With Petroleum Reservoir Engineering Practice readers will learn to •  Use the general material balance equation for basic reservoir analysis •  Perform volumetric and graphical calculations of gas or oil reserves •  Analyze pressure transients tests of normal wells, hydraulically fractured wells, and naturally fractured reservoirs •  Apply waterflooding, gasflooding, and other secondary recovery methods •  Screen reservoirs for EOR processes, and implement pilot and field-wide EOR projects. •  Use practical procedures to build and characterize geologic models, and conduct reservoir simulation •  Develop reservoir management strategies based on practical principles   Throughout, Dr. Ezekwe combines thorough coverage of analytical calculations and reservoir modeling as powerful tools that can be applied together on most reservoir analyses. Each topic is presented concisely and is supported with copious examples and references. The result is an ideal handbook for practicing  engineers, scientists, and managers—and a complete textbook for petroleum engineering students.

Full Product Details

Author:   Nnaemeka Ezekwe
Publisher:   Pearson Education (US)
Imprint:   Prentice Hall
Dimensions:   Width: 23.10cm , Height: 4.50cm , Length: 18.40cm
Weight:   1.428kg
ISBN:  

9780137152834


ISBN 10:   0137152833
Pages:   816
Publication Date:   14 October 2010
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Replaced By:   9780133807424
Format:   Hardback
Publisher's Status:   Out of Print
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Table of Contents

Preface          xiii Acknowledgments          xxv About the Author         xxix   Chapter 1: Porosity of Reservoir Rocks         1 1.1 Introduction   1 1.2 Total Porosity and Effective Porosity   1 1.3 Sources of Porosity Data   3 1.4 Applications of Porosity Data   10 Nomenclature   12 Abbreviations   13 References   13 General Reading   14   Chapter 2: Permeability and Relative Permeability         15 2.1 Introduction   15 2.2 Sources of Permeability Data   16 2.3 Relative Permeability   23 2.4 Sources of Relative Permeability Data   25 2.5 Three-Phase Relative Permeability   32 2.6 Applications of Permeability and Relative Permeability Data   32 Nomenclature   33 Abbreviations   34 References   34 General Reading   37   Chapter 3: Reservoir Fluid Saturations         39 3.1 Introduction   39 3.2 Determination of Water Saturations   40 3.3 Determination of Reservoir Productive Intervals   48 Nomenclature   49 Abbreviations   50 References   50 General Reading   52   Chapter 4: Pressure-Volume-Temperature (PVT) Properties of Reservoir Fluids         53 4.1   Introduction   53 4.2   Phase Diagrams   53 4.3   Gas and Gas-Condensate Properties   63 4.4   Pseudo-critical Properties of Gas Mixtures   67 4.5   Wet Gas and Gas Condensate   70 4.6   Correlations for Gas Compressibility Factor   78 4.7   Gas Formation Volume Factor (FVF)   79 4.8   Gas Density   81 4.9   Gas Viscosity   82 4.10 Gas Coefficient of Isothermal Compressibility   83 4.11 Correlations for Calculation of Oil PVT Properties   93 4.12 Correlations for Calculation of Water PVT Properties   103 Nomenclature   104 Subscripts   106 References   106 General Reading   108   Chapter 5: Reservoir Fluid Sampling and PVT Laboratory Measurements         111 5.1 Overview of Reservoir Fluid Sampling   111 5.2 Reservoir Type and State   116 5.3 Well Conditioning   119 5.4 Subsurface Sampling Methods and Tools  119 5.5 Wireline Formation Testers   121 5.6 PVT Laboratory Measurements   130 5.7 Applications of Laboratory PVT Measurements   134 Nomenclature   138 Subscripts  138 Abbreviations   139 References   139 General Reading   140   Appendix 5A: Typical Reservoir Fluid Study for a Black Oil Sample         142 5A.1 Reservoir Fluid Summary   142 5A.2 Calculated Analysis of Reservoir Fluid   143 5A.3 Pressure-Volume Properties at 212°F (Constant Composition Expansion)   144 5A.4 Differential Liberation at 212°F   145 5A.5 Gas Differentially Liberated at 212°F   146 5A.6 Viscosity Data at 212°F   147 5A.7 Comparison of Reservoir Oil Flash Liberation Tests   147   Appendix 5B: Typical Reservoir Fluid Study for a Gas Condensate Sample         148 5B.1 Summary of Reservoir Data and Surface Sampling Conditions   148 5B.2 Chromatograph Analysis of Separator Gas at 1140 psig and 92°F  150 5B.3 Chromatograph Analysis of Separator Liquid at 1140 psig and 92°F   151 5B.4 Composition of Reservoir Fluid (Calculated)   152 5B.5 Measured Saturation Pressures from Stepwise Recombinations at 267°F   152 5B.6 Pressure-Volume Properties of Reservoir Fluid at 267°F (or CCE)   153 5B.7 Depletion Study at 267°F: Hydrocarbon Analyses of Produced Wellstream (Mole %)   154 5B.8 Retrograde Condensation During Gas Depletion at 267°F   155   Chapter 6: PVT Properties Predictions from Equations of State         157 6.1 Historical Introduction to Equations of State (EOS)   157 6.2 van der Waals (vdW) EOS   158 6.3 Soave-Redlich-Kwong (SRK) EOS   159 6.4 Peng-Robinson (PR) EOS   162 6.5 Phase Equilibrium of Mixtures   162 6.6 Roots from Cubic EOS   164 6.7 Volume Translation   165 6.8 Two-Phase Flash Calculation   168 6.9 Bubble Point and Dew Point Pressure Calculations   170 6.10 Characterization of Hydrocarbon Plus Fractions   171 6.11 Phase Equilibrium Predictions with Equations of State   174 Nomenclature   178 Subscripts   179 Superscripts   179 Abbreviations   179 References   180   Chapter 7: The General Material Balance Equation         183 7.1 Introduction   183 7.2 Derivation of the General Material Balance Equation (GMBE)   183 7.3 The GMBE for Gas Reservoirs   187 7.4 Discussion on the Application of the GMBE   188 Nomenclature   189 Subscripts   189 Abbreviations   189 References   190   Chapter 8: Gas Reservoirs         191 8.1 Introduction 191 8.2 Volumetric Gas Reservoirs   192 8.3 Gas Reservoirs with Water Influx   198 8.4 Water Influx Models   202 8.5 Geopressured Gas Reservoirs   213 8.6 Case Histories of Two Gas Reservoirs   221 Nomenclature   247 Subscripts   248 Abbreviations   248 References   248 General Reading   250   Appendix 8A: Correlations for Estimating Residual Gas Saturations for Gas Reservoirs under Water Influx         251   Appendix 8B: Dimensionless Pressure for Finite and Infinite Aquifers         252   Appendix 8C: Dimensionless Pressure for Infinite Aquifers         253   Chapter 9: Oil Reservoirs         255 9.1 Introduction   255 9.2 Oil Reservoir Drive Mechanisms   255 9.3 Gravity Drainage Mechanism   257 9.4 Volumetric Undersaturated Oil Reservoirs   258 9.5 Undersaturated Oil Reservoirs with Water Influx   264 9.6 Volumetric Saturated Oil Reservoirs   276 9.7 Material Balance Approach for Saturated Oil Reservoirs with Water Influx   279 9.8 Case History of Manatee Reservoirs   279 Nomenclature   292 Subscripts   292 Abbreviations   293 References   293   Chapter 10: Fluid Flow in Petroleum Reservoirs         295 10.1   Introduction   295 10.2   Fluid Types   296 10.3   Definition of Fluid Flow Regimes   297 10.4   Darcy Fluid Flow Equation   301 10.5   Radial Forms of the Darcy Equation   302 10.6   Derivation of the Continuity Equation in Radial Form   310 10.7   Derivation of Radial Diffusivity Equation for Slightly Compressible Fluids   311 10.8   Solutions of the Radial Diffusivity Equation for Slightly Compressible Fluids   313 10.9   Derivation of the Radial Diffusivity Equation for Compressible Fluids   321 10.10 Transformation of the Gas Diffusivity Equation with Real Gas Pseudo-Pressure Concept   322 10.11 The Superposition Principle   327 10.12 Well Productivity Index   338 10.13 Well Injectivity Index   338 Nomenclature   339 Subscripts   340 References   340 General Reading   341   Appendix 10A: Chart for Exponential Integral   342   Appendix 10B: Tabulation of pD vs tD for Radial Flow, Infinite Reservoirs with Constant Terminal Rate at Inner Boundary   343   Appendix 10C: Tabulation of pD vs tD for Radial Flow, Finite Reservoirs with Closed Outer Boundary and Constant Terminal Rate at Inner Boundary   345   Appendix 10D: Tabulation of pD vs tD for Radial Flow, Finite Reservoirs with Constant Pressure Outer Boundary and Constant Terminal Rate at Inner Boundary   350   Appendix 10E: Tabulation of QD vs tD for Radial Flow, Infinite Reservoirs with Constant Terminal Pressure at Inner Boundary   358   Appendix 10F: Tabulation of QD vs tD for Radial Flow, Finite Reservoirs with Closed Outer Boundary and Constant Terminal Pressure at Inner Boundary   361   Chapter 11: Well Test Analysis: Straightline Methods         367 11.1 Introduction   367 11.2 Basic Concepts in Well Test Analysis   368 11.3 Line Source Well, Infinite Reservoir Solution of the Diffusivity Equation with Skin Factor   378 11.4 Well Test Analyses with Straightline Methods   381 11.5 Special Topics in Well Test Analyses   432 Nomenclature   439 Subscripts   440 Abbreviations   441 References   441 General Reading   444   Chapter 12: Well Test Analysis: Type Curves         445 12.1 Introduction   445 12.2 What Are Type Curves?   445 12.3 Gringarten Type Curves   447 12.3.1 Unit-Slope Line   448 12.4 Bourdet Derivative Type Curves   449 12.5 Agarwal Equivalent Time   450 12.6 Type-Curve Matching   451 12.7 Procedures for Manual Application of Type-Curve Matching in Well Test Analysis   452 12.8 Stages of the Type-Curve Matching Procedures   454 Nomenclature   459 Subscripts   460 Abbreviations   460 References   461   Appendix 12A: Characteristic Shapes of Pressure and Pressure-Derivative Curves for Selected Well, Reservoir, and Boundary Models           463   Appendix 12B: Buildup Test Data for Example 12.1           467   Appendix 12C: Calculation of Pressure Derivatives           473   Chapter 13: Well Test Analysis: Hydraulically Fractured Wells and Naturally Fractured Reservoirs         475 13.1   Introduction   475 13.2   Hydraulically Fractured Wells   475 13.3   Definition of Dimensionless Variables for Fractured Wells   476 13.4   Flow Regimes in Fractured Wells   476 13.5   Fractured Well Flow Models   478 13.6   Fractured Well Test Analysis: Straightline Methods   480 13.7   Fractured Well Test Analysis: Type-Curve Matching 487 13.8   Naturally Fractured Reservoirs   497 13.9   Naturally Fractured Reservoir Models   497 13.10 Well Test Analysis in Naturally Fractured Reservoirs Based on Double Porosity Model   505 13.11 Well Test Analysis in NFRs: Straightline Method  s 506 13.12 Well Test Analysis in NFRs: Type Curves   509 13.13 Procedure for Analysis of Well Test from NFRs Assuming Double Porosity Behavior   512 Nomenclature   520 Subscripts   521 Abbreviations   521 References   522 General Reading   523   Chapter 14: Well Test Analysis: Deconvolution Concepts         525 14.1 Introduction   525 14.2 What Is Deconvolution?   525 14.3 The Pressure-Rate Deconvolution Mod  el 526 14.4 Application of Deconvolution to Pressure-Rate Data   528 14.5 Examples on the Application of the von Schroeter Deconvolution Algorithm to Real Well Test Data   529 14.6 General Guidelines for Application of von Schroeter Deconvolution Algorithm to Pressure-Rate Data from Well Tests 534  References 535 General Reading   536   Chapter 15: Immiscible Fluid Displacement          537 15.1 Introduction 537 15.2 Basic Concepts in Immiscible Fluid Displacement   538 15.3 Fractional Flow Equations   544 15.4 The Buckley-Leverett Equation   549 15.5 The Welge Method   553 15.6 Summary   559 Nomenclature   560 References   561 General Reading   562   Chapter 16: Secondary Recovery Methods         563 16.1 Introduction   563 16.2 Waterflooding   564 16.3 Gasflooding   575 Nomenclature   580 Abbreviations   580 References   580 General Reading   582   Chapter 17: Enhanced Oil Recovery          583 17.1 Introduction   583 17.2 EOR Processes   584 17.3 EOR Screening Criteria   587 17.4 Miscible Gas Injection Processes   589 17.5 Methods for Determination of MMP or MME for Gasfloods   595 17.6 Types of Miscible Gas Flooding   612 17.7 Chemical Flooding Processes   614 17.8 Thermal Processes   616 17.9 Implementation of EOR Projects   624 Nomenclature   630 Abbreviations   630 References   631 General Reading   638   Chapter 18: Geologic Modeling and Reservoir Characterization         641 18.1 Introduction   641 18.2 Sources of Data for Geologic Modeling and Reservoir Characterization   641 18.3 Data Quality Control and Quality Assurance   644 18.4 Scale and Integration of Data 644 18.5 General Procedure for Geologic Modeling and Reservoir Characterization   645 Nomenclature   676 Abbreviations   676 References   677 General Reading   678   Chapter 19: Reservoir Simulation          681 19.1 Introduction   681 19.2 Derivation of the Continuity Equation in Rectangular Form 684 19.3 Flow Equations for Three-Phase Flow of Oil, Water, and Gas   686 19.4 Basic Concepts, Terms, and Methods in Reservoir Simulation   689 19.5 General Structure of Flow Reservoir Models   706 Nomenclature 708 Subscripts 709 Abbreviations 709 References 710 General Reading 714   Chapter 20: Reservoir Management         717 20.1 Introduction   717 20.2 Reservoir Management Principles   718 20.3 Case Histories Demonstrating Applications of Reservoir Management Principles   720 References   741 General Reading   744   Index 745

Reviews

Author Information

Nnaemeka Ezekwe holds B.S., M.S., and Ph.D. degrees in chemical and petroleum engineering, and an MBA, all from the University of Kansas. For many years, he worked in several supervisory roles including manager of reservoir evaluation and development for Bechtel Petroleum Operations. As a senior petroleum engineer advisor for Pennzoil and later Devon Energy, he performed reservoir engineering analyses on many domestic and worldwide projects. Nnaemeka was an SPE Distinguished Lecturer in 2004–2005, during which he spoke on reservoir management strategies and practices to audiences in 33 countries in Africa, Asia, Europe, Middle East, and North and South America. He has published numerous technical papers on chemical and petroleum engineering topics. Nnaemeka is a registered professional engineer in California and Texas.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List