Observation of Superconductivity in Epitaxially Grown Atomic Layers: In Situ Electrical Transport Measurements

Author:   Satoru Ichinokura
Publisher:   Springer Verlag, Singapore
Edition:   Softcover reprint of the original 1st ed. 2018
ISBN:  

9789811349614


Pages:   122
Publication Date:   01 February 2019
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $232.85 Quantity:  
Add to Cart

Share |

Observation of Superconductivity in Epitaxially Grown Atomic Layers: In Situ Electrical Transport Measurements


Add your own review!

Overview

This thesis presents first observations of superconductivity in one- or two-atomic-scale thin layer materials. The thesis begins with a historical overview of superconductivity and the electronic structure of two-dimensional materials, and mentions that these key ingredients lead to the possibility of the two-dimensional superconductor with high phase-transition temperature and critical magnetic field. Thereafter, the thesis moves its focus onto the implemented experiments, in which mainly two different materials thallium-deposited silicon surfaces and metal-intercalated bilayer graphenes, are used. The study of the first material is the first experimental demonstration of both a gigantic Rashba effect and superconductivity in the materials supposed to be superconductors without spatial inversion symmetry. The study of the latter material is relevant to superconductivity in a bilayer graphene, which was a big experimental challenge for a decade, and has been first achieved by the author. The description of the generic and innovative measurement technique, highly effective in probing electric resistivity of ultra-thin materials unstable in an ambient environment, makes this thesis a valuable source for researchers not only in surface physics but also in nano-materials science and other condensed-matter physics.

Full Product Details

Author:   Satoru Ichinokura
Publisher:   Springer Verlag, Singapore
Imprint:   Springer Verlag, Singapore
Edition:   Softcover reprint of the original 1st ed. 2018
Weight:   0.454kg
ISBN:  

9789811349614


ISBN 10:   9811349614
Pages:   122
Publication Date:   01 February 2019
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Introduction.- Fundamentals.- Experimental methods.- Thallium biatomic layer.- Thallium-lead monatomiclayer compound.- Intercalation Compounds of Bilayer Graphene.- Conclusion.

Reviews

Author Information

Satoru Ichinokura, a post-doctoral researcher of the Japan Society for the Promotion of Science (JSPS) at The University of Tokyo, is an experimentalist in surface physics and nanotechnology. His work is concerned with atomic-scale thin layer systems such as graphene, transition metal dichalcogenides, and metal-induced surface reconstructions on semiconductors. He is interested particularly in spintronics aspects and low-temperature properties of those materials, represented by superconductivity, and approaches them by electric transport measurements and scanning tunneling microscopy. Satoru Ichinokura received both his Bachelor of Physics and Master of Science in physics from Tohoku University in 2011 and 2013, respectively. Thereafter he joined the group led by Professor Shuji Hasegawa in the Department of Physics, The University of Tokyo, and received his Ph.D. in physics from The University of Tokyo in 2016. During his Master’s program, he received a research grant of Global Centers of Excellence Program from Tohoku University in 2012. During his doctoral program, he received a travel award and student award from the Surface Science Society and a Graduate School of Science award from the School of Science, The University of Tokyo, in 2014, 2015, and 2016, respectively. He was also awarded a research fellowship for young scientists from JSPS, and his research was supported by the JSPS between April 2015 and March 2017.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List