Noncommutative Geometry, Quantum Fields and Motives

Author:   Alain Connes ,  Matilde Marcolli
Publisher:   American Mathematical Society
ISBN:  

9781470450458


Pages:   785
Publication Date:   30 March 2019
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $168.30 Quantity:  
Add to Cart

Share |

Noncommutative Geometry, Quantum Fields and Motives


Add your own review!

Overview

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adele class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Full Product Details

Author:   Alain Connes ,  Matilde Marcolli
Publisher:   American Mathematical Society
Imprint:   American Mathematical Society
Weight:   1.410kg
ISBN:  

9781470450458


ISBN 10:   1470450453
Pages:   785
Publication Date:   30 March 2019
Audience:   College/higher education ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Quantum fields, noncommutative spaces, and motives The Riemann zeta function and noncommutative geometry Quantum statistical mechanics and Galois symmetries Endomotives, thermodynamics, and the Weil explicit formula Appendix Bibliography Index.

Reviews

...the authors manage very well in filtering and presenting the central ideas whilst including a rich and precise list of references to the literature. ...will undoubtedly serve as an inspiration to the formidable mathematical question on the structure of the following two spaces: spacetime and the space of primes. - Mathematical Reviews


Author Information

Alain Connes, College de France, Paris, France. Matilde Marcolli, Max-Planck-Institut fur Mathematik, Bonn, Germany.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List