|
|
|||
|
||||
OverviewThis book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems. Full Product DetailsAuthor: Alexander I. ZhmakinPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 2023 ed. ISBN: 9783031259753ISBN 10: 3031259750 Pages: 422 Publication Date: 03 July 2024 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationAlexander Zhmakin was born on December 3rd, 1951 in Leningrad, USSR. He completed his education at the Leningrad Polytechnical Institute, graduating in 1974. In 1980, he obtained his PhD in the field of numerical simulation of nonequilibrium shocked flows. He later received his Dr.Sci. in 1992, for his work on the numerical simulation of gas phase and liquid phase epitaxy. Zhmakin's main interests include computational fluid dynamics and heat transfer, as well as the simulation of single crystal growth and cryobiology. Tab Content 6Author Website:Countries AvailableAll regions |