Microwave Circuit Design Using Linear and Nonlinear Techniques

Author:   George D. Vendelin (Stanford, Santa Clara, and San Jose State Universities; UC-Berkeley-Extension) ,  Anthony M. Pavio (Rockwell Collins) ,  Ulrich L. Rohde (University of the Joint Armed Forces, Munich, Germany) ,  Matthias Rudolph (Brandenburg University of Technology, Cottbus, Germany)
Publisher:   John Wiley & Sons Inc
Edition:   3rd edition
ISBN:  

9781118449752


Pages:   1200
Publication Date:   11 June 2021
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $373.95 Quantity:  
Add to Cart

Share |

Microwave Circuit Design Using Linear and Nonlinear Techniques


Add your own review!

Overview

Full Product Details

Author:   George D. Vendelin (Stanford, Santa Clara, and San Jose State Universities; UC-Berkeley-Extension) ,  Anthony M. Pavio (Rockwell Collins) ,  Ulrich L. Rohde (University of the Joint Armed Forces, Munich, Germany) ,  Matthias Rudolph (Brandenburg University of Technology, Cottbus, Germany)
Publisher:   John Wiley & Sons Inc
Imprint:   John Wiley & Sons Inc
Edition:   3rd edition
Dimensions:   Width: 17.80cm , Height: 4.80cm , Length: 25.70cm
Weight:   1.973kg
ISBN:  

9781118449752


ISBN 10:   1118449754
Pages:   1200
Publication Date:   11 June 2021
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Foreword xvii Preface To The Third Edition xix 1 RF/Microwave Systems 1 1.1 Introduction 1 1.2 Maxwell’s Equations 11 1.3 Frequency Bands, Modes, and Waveforms of Operation 13 1.4 Analog and Digital Signals 15 1.5 Elementary Functions 26 1.6 Basic RF Transmitters and Receivers 32 1.7 RF Wireless/Microwave/Millimeter Wave Applications 34 1.8 Modern CAD for Nonlinear Circuit Analysis 37 1.9 Dynamic Load Line 38 References 39 Bibliography 40 Problems 41 2 Lumped and Distributed Elements 43 2.1 Introduction 43 2.2 Transition from RF to Microwave Circuits 43 2.3 Parasitic Effects on Lumped Elements 46 2.4 Distributed Elements 53 2.5 Hybrid Element: Helical Coil 54 References 55 Bibliography 57 Problems 57 3 Active Devices 59 3.1 Introduction 59 3.2 Diodes 60 3.2.1 Large-Signal Diode Model 61 3.2.2 Mixer and Detector Diodes 65 3.2.3 Parameter Trade-Offs 70 3.2.4 Mixer Diodes 72 3.2.5 PIN Diodes 73 3.2.6 Tuning Diodes 84 3.2.7 Q Factor or Diode Loss 94 3.2.8 Diode Problems 99 3.2.9 Diode-Tuned Resonant Circuits 105 3.3 Microwave Transistors 110 3.3.1 Transistor Classification 110 3.3.2 Bipolar Transistor Basics 113 3.3.3 GaAs and InP Heterojunction Bipolar Transistors 127 3.3.4 SiGe HBTs 141 3.3.5 Field-Effect Transistor Basics 147 3.3.6 GaN, GaAs, and InP HEMTs 158 3.3.7 MOSFETs 165 3.3.8 Packaged Transistors 182 3.4 Example: Selecting Transistor and Bias for Low-Noise Amplification 186 3.5 Example: Selecting Transistor and Bias for Oscillator Design 191 3.6 Example: Selecting Transistor and Bias for Power Amplification 194 3.6.1 Biasing HEMTs 196 3.6.2 Biasing HBTs 198 References 200 Bibliography 203 Problems 204 4 Two-Port Networks 205 4.1 Introduction 205 4.2 Two-Port Parameters 206 4.3 S Parameters 216 4.4 S Parameters from SPICE Analysis 216 4.5 Mason Graphs 217 4.6 Stability 221 4.7 Power Gains, Voltage Gain, and Current Gain 223 4.7.1 Power Gain 223 4.7.2 Voltage Gain and Current Gain 229 4.7.3 Current Gain 230 4.8 Three-Ports 231 4.9 Derivation of Transducer Power Gain 234 4.10 Differential S Parameters 236 4.10.1 Measurements 239 4.10.2 Example 239 4.11 Twisted-Wire Pair Lines 240 4.12 Low-Noise and High-Power Amplifier Design 242 4.13 Low-Noise Amplifier Design Examples 245 References 254 Bibliography 255 Problems 255 5 Impedance Matching 261 5.1 Introduction 261 5.2 Smith Charts and Matching 261 5.3 Impedance Matching Networks 269 5.4 Single-Element Matching 269 5.5 Two-Element Matching 271 5.6 Matching Networks Using Lumped Elements 272 5.7 Matching Networks Using Distributed Elements 273 5.7.1 Twisted-Wire Pair Transformers 273 5.7.2 Transmission Line Transformers 274 5.7.3 Tapered Transmission Lines 276 5.8 Bandwidth Constraints for Matching Networks 277 References 287 BIBLIOGRAPHY 288 PROBLEMS 288 6 Microwave Filters 294 6.1 Introduction 294 6.2 Low-Pass Prototype Filter Design 295 6.2.1 Butterworth Response 295 6.2.2 Chebyshev Response 297 6.3 Transformations 302 6.3.1 Low-Pass Filters: Frequency and Impedance Scaling 302 6.3.2 High-Pass Filters 302 6.3.3 Bandpass Filters 304 6.3.4 Narrow-Band Bandpass Filters 306 6.3.5 Band-Stop Filters 309 6.4 Transmission Line Filters 312 6.4.1 Semilumped Low-Pass Filters 315 6.4.2 Richards Transformation 318 6.5 Exact Designs and CAD Tools 325 6.6 Real-Life Filters 326 6.6.1 Lumped Elements 326 6.6.2 Transmission Line Elements 327 6.6.3 Cavity Resonators 327 6.6.4 Coaxial Dielectric Resonators 327 6.6.5 Thin-Film Bulk-Wave Acoustic Resonator (FBAR) 327 References 330 Bibliography 330 Problems 330 7 Noise In Linear and Nonlinear Two-Ports 332 7.1 Introduction 332 7.2 Signal-to-Noise Ratio 334 7.3 Noise Figure Measurements 336 7.4 Noise Parameters and Noise Correlation Matrix 338 7.4.1 Correlation Matrix 338 7.4.2 Method of Combining Two-Port Matrix 339 7.4.3 Noise Transformation Using the [ABCD] Noise Correlation Matrices 339 7.4.4 Relation Between the Noise Parameter and [CA] 340 7.4.5 Representation of the ABCD Correlation Matrix in Terms of Noise Parameters [7.4] 342 7.4.6 Noise Correlation Matrix Transformations 342 7.4.7 Matrix Definitions of Series and Shunt Element 343 7.4.8 Transferring All Noise Sources to the Input 344 7.4.9 Transformation of the Noise Sources 345 7.4.10 ABCD Parameters for CE, CC, and CB Configurations 345 7.5 Noisy Two-Port Description 347 7.6 Noise Figure of Cascaded Networks 353 7.7 Influence of External Parasitic Elements 354 7.8 Noise Circles 357 7.9 Noise Correlation in Linear Two-Ports Using Correlation Matrices 360 7.10 Noise Figure Test Equipment 363 7.11 How to Determine Noise Parameters 365 7.12 Noise in Nonlinear Circuits 366 7.12.1 Noise Sources in the Nonlinear Domain 368 7.13 Transistor Noise Modeling 371 7.13.1 Noise Modeling of Bipolar and Heterobipolar Transistors 372 7.13.2 Noise Modeling of Field-effect Transistors 384 References 390 Bibliography 393 Problems 395 8 Small- and Large-Signal Amplifier Design 397 8.1 Introduction 397 8.2 Single-Stage Amplifier Design 399 8.2.1 High Gain 399 8.2.2 Maximum Available Gain and Unilateral Gain 400 8.2.3 Low-Noise Amplifier 407 8.2.4 High-Power Amplifier 409 8.2.5 Broadband Amplifier 410 8.2.6 Feedback Amplifier 411 8.2.7 Cascode Amplifier 413 8.2.8 Multistage Amplifier 420 8.2.9 Distributed Amplifier and Matrix Amplifier 421 8.2.10 Millimeter-Wave Amplifiers 425 8.3 Frequency Multipliers 426 8.3.1 Introduction 426 8.3.2 Passive Frequency Multiplication 426 8.3.3 Active Frequency Multiplication 427 8.4 Design Example of 1.9-GHz PCS and 2.1-GHz W-CDMA Amplifiers 429 8.5 Stability Analysis and Limitations 430 References 435 Bibliography 438 Problems 440 9 Power Amplifier Design 442 9.1 Introduction 442 9.2 Characterizing Transistors for Power-Amplifier Design 445 9.3 Single-Stage Power Amplifier Design 449 9.4 Multistage Design 455 9.5 Power-Distributed Amplifiers 462 9.6 Class of Operation 480 9.6.1 Optimizing Conduction Angle 481 9.6.2 Optimizing Harmonic Termination 490 9.6.3 Analog Switch-Mode Amplifiers 494 9.7 Efficiency and Linearity Enhancement PA Topologies 498 9.7.1 The Doherty Amplifier 499 9.7.2 Outphasing Amplifiers 502 9.7.3 Kahn EER and Envelope Tracking Amplifiers 505 9.8 Digital Microwave Power Amplifiers (class-D/S) 514 9.8.1 Voltage-Mode Topology 516 9.8.2 Current-Mode Topology 521 9.9 Power Amplifier Stability 527 References 530 Bibliography 534 Problems 536 10 Oscillator Design 538 10.1 Introduction 538 10.2 Compressed Smith Chart 544 10.3 Series or Parallel Resonance 545 10.4 Resonators 546 10.4.1 Dielectric Resonators 547 10.4.2 YIG Resonators 552 10.4.3 Varactor Resonators 552 10.4.4 Ceramic Resonators 556 10.4.5 Coupled Resonator 558 10.4.6 Resonator Measurements 564 10.5 Two-Port Oscillator Design 570 10.6 Negative Resistance From Transistor Model 579 10.7 Oscillator Q and Output Power 586 10.8 Noise in Oscillators: Linear Approach 590 10.8.1 Leeson’s Oscillator Model 590 10.8.2 Low-Noise Design 596 10.9 Analytic Approach to Optimum Oscillator Design Using S Parameters 608 10.10 Nonlinear Active Models for Oscillators 621 10.10.1 Diodes with Hyperabrupt Junction 623 10.10.2 Silicon Versus Gallium Arsenide 624 10.10.3 Expressions for gm and Gd 625 10.10.4 Nonlinear Expressions for Cgs, Ggf, and Ri 627 10.10.5 Analytic Simulation of I–V Characteristics 628 10.10.6 Equivalent-Circuit Derivation 628 10.10.7 Determination of Oscillation Conditions 631 10.10.8 Nonlinear Analysis 631 10.10.9 Conclusion 632 10.11 Oscillator Design Using Nonlinear Cad Tools 632 10.11.1 Parameter Extraction Method 637 10.11.2 Example of Nonlinear Design Methodology: 4-GHz Oscillator– Amplifier 639 10.11.3 Conclusion 645 10.12 Microwave Oscillators Performance 647 10.13 Design of an Oscillator Using Large-Signal Y Parameters 651 10.14 Example for Large-Signal Design Based on Bessel Functions 653 10.15 Design Example for Best Phase Noise and Good Output Power 658 Requirements 658 Design Steps 658 Design Calculations 662 10.16 A Design Example for a 350 MHz Fixed Frequency Colpitts Oscillator 666 Step 1: 667 Step 2: Biasing 667 Step 3: Determination of the Large Signal Transconductance 668 10.17 1/f NOISE 678 10.18 2400 MHz MOSFET-Based Push–Pull Oscillator 681 10.18.1 Design Equations 682 10.18.2 Design Calculations 687 10.18.3 Phase Noise 688 10.19 CAD Solution for Calculating Phase Noise in Oscillators 691 10.19.1 General Analysis of Noise Due to Modulation and Conversion in Oscillators 691 10.19.2 Modulation by a Sinusoidal Signal 692 10.19.3 Modulation by a Noise Signal 693 10.19.4 Oscillator Noise Models 695 10.19.5 Modulation and Conversion Noise 696 10.19.6 Nonlinear Approach for Computation of Noise Analysis of Oscillator Circuits 696 10.19.7 Noise Generation in Oscillators 699 10.19.8 Frequency Conversion Approach 699 10.19.9 Conversion Noise Analysis 699 10.19.10 Noise Performance Index Due to Frequency Conversion 700 10.19.11 Modulation Noise Analysis 702 10.19.12 Noise Performance Index Due to Contribution of Modulation Noise 704 10.19.13 PM–AM Correlation Coefficient 705 10.20 Phase Noise Measurement 706 10.20.1 Phase Noise Measurement Techniques 706 10.21 Back to Conventional Phase Noise Measurement System (Hewlett-Packard) 724 10.22 State-of-the-art 730 10.22.1 Analog Signal Path 730 10.22.2 Digital Signal Path 732 10.22.3 Pulsed Phase Noise Measurement 735 10.22.4 Cross-Correlation 736 10.23 Instrument Performance 737 10.24 Noise in Circuits and Semiconductors [10.74] 738 10.25 Validation Circuits 742 10.25.1 1000-MHz Ceramic Resonator Oscillator (CRO) 742 10.25.2 4100-MHz Oscillator with Transmission Line Resonators 745 10.25.3 2000-MHz GaAs FET-Based Oscillator 747 10.26 Analytical Approach for Designing Efficient Microwave FET and Bipolar Oscillators (Optimum Power) 751 10.26.1 Series Feedback (MESFET) 751 10.26.2 Parallel Feedback (MESFET) 758 10.26.3 Series Feedback (Bipolar) 760 10.26.4 Parallel Feedback (Bipolar) 763 10.26.5 An FET Example 764 10.26.6 Simulated Results 773 10.26.7 Synthesizers 777 10.26.8 Self-Oscillating Mixer 777 10.27 Introduction 779 10.28 Large Signal Noise Analysis 780 10.29 Quantifying Phase Noise 789 10.30 Summary 791 References 791 Bibliography 795 Problems 806 11 Frequency Synthesizer 812 11.1 Introduction 812 11.2 Building Block of Synthesizer 814 11.2.1 Voltage Controlled Oscillator 814 11.2.2 Reference Oscillator 814 11.2.3 Frequency Divider 815 11.2.4 Phase-Frequency Comparators 817 11.2.5 Loop Filters – Filters for Phase Detectors Providing Voltage Output 822 11.3 Important Characteristics of Synthesizers 831 11.3.1 Frequency Range 831 11.3.2 Phase Noise 831 11.3.3 Spurious Response 831 11.3.4 Transient Behavior of Digital Loops Using Tri-State Phase Detectors 831 11.4 Practical Circuits 846 11.5 The Fractional-N Principle 846 11.6 Spur-Suppression Techniques 849 11.7 Digital Direct Frequency Synthesizer 851 11.7.1 DDS Advantages 856 References 857 12 Microwave Mixer Design 859 12.1 Introduction 859 12.2 Diode Mixer Theory 866 12.3 Single-Diode Mixers 880 12.4 Single-Balanced Mixers 890 12.5 Double-Balanced Mixers 906 12.6 Fet Mixer Theory 931 12.7 Balanced Fet Mixers 955 12.8 Resistive (Reflective) Fet Mixers 966 12.8.1 Switched Mode “ON” and “OFF” Resistance 968 12.8.2 Loss Limit of Reflection FETs Device 971 12.8.3 Conversion Loss 972 12.8.4 Gain Compression and Intercept Point 973 12.8.5 Design and Performance Optimization Techniques 974 12.9 Special Mixer Circuits 978 12.10 Mixer Noise 988 12.10.1 Mixer Noise Analysis (MOSFET) 989 12.10.2 Noise in Resistive GaAs HEMT Mixers 995 References 1001 Bibliography 1003 Problems 1005 13 RF Switches and Attenuators 1007 13.1 PIN Diodes 1007 13.2 PIN Diode Switches 1010 13.3 PIN Diode Attenuators 1018 13.4 FET Switches 1024 References 1027 Bibliography 1028 14 Simulation of Microwave Circuits 1029 14.1 Introduction 1029 14.2 Design Types 1031 14.2.1 Printed Circuit Board 1031 14.2.2 Monolithic Microwave Integrated Circuits 1032 14.3 Design Entry 1033 14.3.1 Schematic Capture 1033 14.3.2 Board and MMIC Layout 1034 14.4 Linear Circuit Simulation 1035 14.4.1 Small-Signal AC and S-parameter Simulation 1035 14.4.2 Example: Microwave Filter, Schematic Based 1039 14.5 Nonlinear Simulation 1040 14.5.1 Newton’s Method 1040 14.5.2 Transistor Modeling 1040 14.5.3 Transient Simulation 1041 14.5.4 Example: Transient 1044 14.5.5 Harmonic Balance Simulation 1045 14.5.6 Example: Harmonic Balance, One-tone Amplifier 1050 14.5.7 Example: Harmonic Balance, Two-tone Amplifier 1051 14.5.8 Envelope Simulation 1052 14.5.9 Example: Envelope, Modulated Amplifier 1056 14.5.10 Mixing Circuit and Thermal Simulation 1057 14.5.11 Example: Electrothermal 1059 14.6 Electromagnetic Simulation 1062 14.6.1 Method of Moments 1063 14.6.2 Finite Element Method 1064 14.6.3 Finite Difference Time Domain 1064 14.6.4 Performing an EM Simulation 1065 14.6.5 Example: Microwave Filter, EM Based 1066 14.7 Design for Manufacturing 1067 14.7.1 Circuit Optimization 1067 14.7.2 Example: Optimization 1069 14.7.3 Component Variation 1069 14.7.4 Monte Carlo Analysis 1074 14.7.5 Example: Monte Carlo Analysis 1075 14.7.6 Yield Analysis and Yield Optimization 1078 14.8 Oscillator Design and Simulation Example 1079 14.8.1 Written by Ludwig Eichinger, Keysight Technologies 1079 14.8.2 STW Delay Line 1079 14.8.3 Behavioral Simulation 1080 14.8.4 Choosing an Amplifier 1081 14.8.5 DC Feed Design 1084 14.8.6 Wilkinson Divider Design 1085 14.8.7 Matching and Linear Oscillator Analysis 1085 14.8.8 Optimization of Loop Gain and Phase 1086 14.8.9 Nonlinear Oscillator Analysis 1089 14.8.10 1/f Noise Characterization 1090 14.8.11 Phase Noise Simulation 1096 14.8.12 Oscillator Start-up Time 1099 14.8.13 Layout EM Cosimulation 1099 14.8.14 Oscillator Design Summary 1102 14.9 Conclusion 1102 References 1102 Appendix A Derivations For Unilateral Gain Section 1105 Appendix B Vector Representation of Two-Tone Intermodulation Products 1108 Appendix C Passive Microwave Elements 1127 Index 1148

Reviews

Author Information

George D. Vendelin is Adjunct Professor at Stanford, Santa Clara, and San Jose State Universities, as well as UC-Berkeley-Extension. He is a Fellow of the IEEE and has over 40 years of microwave engineering design and teaching experience. Anthony M. Pavio, PhD, is Manager of the Phoenix Design Center for Rockwell Collins. He is a Fellow of the IEEE and was previously Manager at the Integrated RF Ceramics Center for Motorola Labs. Ulrich L. Rohde is a Professor of Technical Informatics, University of the Joint Armed Forces, in Munich, Germany; a member of the staff of other universities world-wide; partner of Rohde & Schwarz, Munich; and Chairman of the Board of Synergy Microwave Corporation. He is the author of two editions of Microwave and Wireless Synthesizers: Theory and Design. Dr.-Ing. Matthias Rudolph is Ulrich L. Rohde Professor for RF and Microwave Techniques at Brandenburg University of Technology in Cottbus, Germany and heads the low-noise components lab at the Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik in Berlin.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List