Micro and Nanophotonics for Semiconductor Infrared Detectors: Towards an Ultimate Uncooled Device

Author:   Zoran Jakšić
Publisher:   Springer International Publishing AG
Edition:   Softcover reprint of the original 1st ed. 2014
ISBN:  

9783319358659


Pages:   258
Publication Date:   10 September 2016
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $232.85 Quantity:  
Add to Cart

Share |

Micro and Nanophotonics for Semiconductor Infrared Detectors: Towards an Ultimate Uncooled Device


Add your own review!

Overview

The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of plasmonics appeared, dedicated to the manipulation with evanescent, surface-bound electromagnetic waves and offering an opportunity to merge nanoelectronics with all-optical circuitry. In the field of infrared technologies MEMS and nanotechnologies ensured the appearance of a new generation of silicon-based thermal detectors with properties vastly surpassing the conventional thermal devices. However, another family of infrared detectors, photonic devices based on narrow-bandgap semiconductors, has traditionally been superior to thermal detectors. Literature about their micro and nanophotonic enhancement has been scarce and scattered through journals. This book offers the first systematic approach to numerous different MEMS and nanotechnology-based methods available for the improvement of photonic infrared detectors and points out to a path towards uncooled operation with the performance of cryogenically cooled devices. It is shown that a vast area for enhancement does exists and that photonic devices can readily keep their leading position in infrared detection. The various methods and approaches described in the book are also directly applicable to different other types of photodetectors like solar cells, often with little or no modification.

Full Product Details

Author:   Zoran Jakšić
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   Softcover reprint of the original 1st ed. 2014
Dimensions:   Width: 15.50cm , Height: 1.50cm , Length: 23.50cm
Weight:   4.277kg
ISBN:  

9783319358659


ISBN 10:   3319358650
Pages:   258
Publication Date:   10 September 2016
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Part I Introduction- A Path to an Ideal Photonic Detector.- Infrared Detector Performance and Main Figures of Merit.- “Ideal” IR Detectors.- Classification of IR Detectors.- On Specific Detectivity of Photonic Infrared Detectors.- Recombination Mechanisms in Direct Narrow-Bandgap Semiconductors.- Noise in Semiconductor IR Detectors.- Optimizing D*f* product.- Part II Photon Management.- Nonimaging Optical Concentrators.- Refractive Concentrators.- Reflective Nonimaging Concentrators,- Antireflection Structures.- Plasmonic Field Concentrators.- Radiative Lifetime Increase.- Part III Thermal Noise Management.- Nonequilibrium Suppression of Auger Generation-Recombination.- Limits of Nonequilibrium Detector Operation.- General Model of Nonequilibrium Photodetectors with Auger Suppression.- Contact Phenomena and Calvanic Suppression of Auger Processes.- Exclusion photoconductors.- Extraction Photodiodes.- Galvanomagnetic Methods: Magnetoconcentration Photodetector.- Hybrid Methods.- On Application of Nonequilibrium Detectors: LWIR Free-Spec Optics.- Negative Luminescence Shields.

Reviews

Author Information

Zoran Jakšić was born in 1960 in Pancevo, Serbia. He received his Dipl.-Ing., Mag. Sci. and Ph.D. degrees in electrical engineering – engineering physics from the School of Electrical Engineering, University of Belgrade, Serbia. His interest are nano photonics and nano plasmonics including electromagnetic metamaterials, subwavelength plasmonic crystals and photonic bandgap structures, NEMS and MEMS sensors and infrared photodetectors. He authored nearly 300 peer-reviewed publications, including 66 international journal papers, an international monograph and 3 book chapters. He is a full research professor and the science director of the Center of Microelectronic Technologies, a department of the Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia. He is the President Elect of the Optical Society of Serbia and the Programme Chair of the ETRAN Society, the oldest and the most prestigious Serbian professional society. He is a Senior Member of the IEEE and a member of the Optical Society of America.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List