Laser Power Stabilization via Radiation Pressure

Author:   Marina Trad Nery
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2022
ISBN:  

9783030958671


Pages:   154
Publication Date:   26 April 2022
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $362.22 Quantity:  
Add to Cart

Share |

Laser Power Stabilization via Radiation Pressure


Add your own review!

Overview

This book offers a comprehensive and complete description of a new scheme to stabilize the power of a laser on a level needed for high precision metrology experiments. The novel aspect of the scheme is sensing power fluctuations via the radiation pressure driven motion they induce on a micro-oscillator mirror. It is shown that the proposed technique can result in higher signals for power fluctuations than what is achieved by a direct power detection, and also that it enables the generation of a strong bright squeezed beam. The book starts with the basics of power stabilization and an overview on the current state of art. Then, detailed theoretical calculations are performed, and the advantages of the new scheme are highlighted. Finally, a proof-of-principle experiment is described and its results are analyzed in details. The success of the work presented here paves a way for achieving high power stability in future experiments and is of interest for high precisionmetrology experiments, like gravitational wave detectors, and optomechanical experiments. Nominated as an outstanding PhD thesis by the Gravitational Wave International Committee.

Full Product Details

Author:   Marina Trad Nery
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2022
Weight:   0.436kg
ISBN:  

9783030958671


ISBN 10:   3030958671
Pages:   154
Publication Date:   26 April 2022
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

Author Information

"Marina Trad Nery graduated from the State University of Campinas, UNICAMP, with a Bachelor Degree in Physics. She worked on the field of cosmic rays and wrote a monography with title ""Study of the capacity of the Pierre Auger Observatory in detecting a dipolar anisotropy"", funded by FAPESP. During her master studies she worked with experimental optics, more specifically with optical parametric oscillators and with supercontinuum generation in PCF fibers. She received her Master Degree in Physics for the thesis ""Construction of an optical parametric oscillator for trapping cold atoms"", funded by the Scholarship of Productivity in Innovative Technological Development and Extension from CNPq. After her master studies, she worked as an Intellectual Property Analyst at the Innovation Agency of the State University of Campinas, Brazil. For her Ph.D. studies she moved to Germany and worked as a research associate at the Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) andLeibniz Universität Hannover, with a fellowship from the Marie Curie International Training Network. She became a member of the LIGO collaboration and worked together with Professor Benno Willke on lasers for future Gravitational Wave Detectors. In 2020 she received her Doctoral of Natural Sciences Degree with the excellent mark “summa cum laude”. Her thesis was honored by the Prize of the Leibniz Universitätsgesellschaft e. V. and by the 2020 GWIC-Braccini Thesis prize. Since October 2020, she works as a researcher in the group “Advanced Light Sources” in the Cluster of Excellence “Quantum Frontiers”."

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List