Ion Implantation in Diamond, Graphite and Related Materials

Author:   M.S. Dresselhaus ,  R. Kalish
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1992
Volume:   22
ISBN:  

9783642771736


Pages:   202
Publication Date:   25 January 2012
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $155.22 Quantity:  
Add to Cart

Share |

Ion Implantation in Diamond, Graphite and Related Materials


Add your own review!

Overview

Carbon has always been a unique and intriguing material from a funda­ mental standpoint and, at the same time, a material with many technological uses. Carbon-based materials, diamond, graphite and their many deriva­ tives, have attracted much attention in recent years for many reasons. Ion implantation, which has proven to be most useful in modifying the near­ surface properties of many kinds of materials, in particular semiconductors, has also been applied to carbon-based materials. This has yielded, mainly in the last decade, many scientifically interesting and technologically impor­ tant results. Reports on these studies have been published in a wide variety of journals and topical conferences, which often have little disciplinary overlap, and which often address very different audiences. The need for a review to cover in an integrated way the various diverse aspects of the field has become increasingly obvious. Such a review should allow the reader to get an overview of the research that has been done thus far, to gain an ap­ preciation of the common features in the response of the various carbon to ion impact, and to become aware of current research oppor­ allotropes tunities and unresolved questions waiting to be addressed. Realizing this, and having ourselves both contributed to the field, we decided to write a review paper summarizing the experimental and theoretical status of ion­ implantation into diamond, graphite and related materials.

Full Product Details

Author:   M.S. Dresselhaus ,  R. Kalish
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1992
Volume:   22
Dimensions:   Width: 15.50cm , Height: 1.10cm , Length: 23.50cm
Weight:   0.335kg
ISBN:  

9783642771736


ISBN 10:   3642771734
Pages:   202
Publication Date:   25 January 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Introduction.- 2. Carbon Materials: Graphite, Diamond and Others.- 2.1 Structure and Materials.- 2.2 Properties of Graphite.- 2.3 Properties of Diamond.- 3. Ion Implantation.- 3.1 Energy Loss Mechanisms.- 3.2 Parameters of Implantation.- 3.3 Radiation Damage.- 3.4 Energy Loss Simulations.- 4. Ion Beam Analysis Techniques.- 4.1 Rutherford Backscattering Spectroscopy.- 4.2 Nuclear Reaction Analysis.- 4.3 Particle Induced X-Ray Emission (PIXE).- 4.4 Channeling.- 4.5 Elastic Recoil Detection (ERD).- 4.6 Secondary Ion Mass Spectroscopy (SIMS).- 4.7 Channeling Studies in Graphite-Based Materials.- 4.8 Stoichiometric Characterization of GICs by RBS.- 4.9 Ion Channeling in GICs.- 5. Other Characterization Techniques.- 5.1 Raman Spectroscopy.- 5.2 Other Optical and Magneto-Optical Techniques.- 5.3 Electron Microscopies and Spectroscopies.- 5.4 X-Ray-Related Characterization Techniques.- 5.5 Electronic Transport Measurements.- 5.6 Electron Spin Resonance (ESR).- 5.7 Hyperfine Interactions.- 5.8 Mechanical Properties.- 6. Implantation-Induced Modifications to Graphite.- 6.1 Lattice Damage.- 6.2 Regrowth of Ion-Implanted Graphite.- 6.3 Structural Modification.- 6.4 Modification of the Electronic Structure and Transport Properties.- 6.5 Modification of Mechanical Properties.- 6.6 Implantation with Ferromagnetic Ions.- 6.7 Implantation-Enhanced Intercalation.- 6.8 Implantation with Hydrogen and Deuterium.- 7. Implantation-Induced Modifications to Graphite-Related Materials.- 7.1 Glassy Carbon.- 7.2 Carbon Fibers.- 7.3 Disordered Graphite.- 7.4 Carbon-Based Polymers.- 8. Implantation-Induced Modifications to Diamond.- 8.1 Structural Modifications and Damage-Related Electrical Conductivity.- 8.2 Volume Expansion.- 8.3 Lattice Damage.- 8.4 Damage Annealing and Implantations at Elevated Temperatures.- 8.5 Electrical Doping.- 8.6 Impurity State Identification.- 8.7 Electronic Device Realization.- 8.8 New Materials Synthesis.- 8.9 Improving Mechanical Properties.- 9. Implantation-Induced Modifications to Diamond-Related Materials.- 9.1 Diamond-Like Carbon (a-C:H) Films.- 9.2 Diamond Films.- 10. Concluding Remarks.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List