Intermittent Convex Integration for the 3D Euler Equations

Author:   Tristan Buckmaster ,  Nader Masmoudi ,  Matthew Novack ,  Vlad Vicol
Publisher:   Princeton University Press
ISBN:  

9780691249551


Pages:   256
Publication Date:   11 July 2023
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $435.60 Quantity:  
Add to Cart

Share |

Intermittent Convex Integration for the 3D Euler Equations


Add your own review!

Overview

A new threshold for the existence of weak solutions to the incompressible Euler equations To gain insight into the nature of turbulent fluids, mathematicians start from experimental facts, translate them into mathematical properties for solutions of the fundamental fluids PDEs, and construct solutions to these PDEs that exhibit turbulent properties. This book belongs to such a program, one that has brought convex integration techniques into hydrodynamics. Convex integration techniques have been used to produce solutions with precise regularity, which are necessary for the resolution of the Onsager conjecture for the 3D Euler equations, or solutions with intermittency, which are necessary for the construction of dissipative weak solutions for the Navier-Stokes equations. In this book, weak solutions to the 3D Euler equations are constructed for the first time with both non-negligible regularity and intermittency. These solutions enjoy a spatial regularity index in L^2 that can be taken as close as desired to 1/2, thus lying at the threshold of all known convex integration methods. This property matches the measured intermittent nature of turbulent flows. The construction of such solutions requires technology specifically adapted to the inhomogeneities inherent in intermittent solutions. The main technical contribution of this book is to develop convex integration techniques at the local rather than global level. This localization procedure functions as an ad hoc wavelet decomposition of the solution, carrying information about position, amplitude, and frequency in both Lagrangian and Eulerian coordinates.

Full Product Details

Author:   Tristan Buckmaster ,  Nader Masmoudi ,  Matthew Novack ,  Vlad Vicol
Publisher:   Princeton University Press
Imprint:   Princeton University Press
ISBN:  

9780691249551


ISBN 10:   0691249555
Pages:   256
Publication Date:   11 July 2023
Audience:   College/higher education ,  Professional and scholarly ,  Tertiary & Higher Education ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Tristan Buckmaster is professor of mathematics at the University of Maryland. Nader Masmoudi is professor of mathematics at New York University. Matthew Novack is assistant professor of mathematics at Purdue University. Vlad Vicol is professor of mathematics at New York University.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List