Interaction of Particles and Radiation with Matter

Author:   Vsevolod V. Balashov ,  G. Pontecorvo
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1997
ISBN:  

9783642643835


Pages:   238
Publication Date:   18 September 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $145.17 Quantity:  
Add to Cart

Share |

Interaction of Particles and Radiation with Matter


Add your own review!

Overview

Full Product Details

Author:   Vsevolod V. Balashov ,  G. Pontecorvo
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1997
Dimensions:   Width: 15.50cm , Height: 1.30cm , Length: 23.50cm
Weight:   0.394kg
ISBN:  

9783642643835


ISBN 10:   3642643833
Pages:   238
Publication Date:   18 September 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Introduction: Fundamentals of the Structure of Matter.- A. Elementary Particles.- B. The Atomic Nucleus.- C. Atoms and Molecules.- I. Interaction of Charged Particles with Matter.- First Lecture.- 1.1 Ionization Stopping and Multiple Scattering of Fast Heavy Particles in Disordered Media: Relationship Between Parameters Characterizing the Passage of Particles Through Matter and Characteristics of Elementary Processes.- 1.2 The Classical Theory of Ionization Stopping.- Second Lecture.- 2.1 Quantum Theory of Ionization Stopping of Fast Charged Particles.- 2.2 Stopping Times and Path Ranges of Particles in Media.- 2.3 Calculation of the Average Multiple-Scattering Angle.- 2.4 Straggling: Fluctuations of Ionization Losses.- Third Lecture.- 3.1 “Dielectric Theory” of Ionization Stopping.- 3.2 Application of the “Dielectric Theory”: Ionization Stopping in a Rarefied Gas.- 3.3 Stopping of a Charged Particle in a Degenerate Electron Gas.- 3.4 Local Density Approximation.- 3.5 Relativistic Effects: The Bethe-Bloch Formula.- Fourth Lecture.- 4.1 Ionization Stopping of Slow Particles.- 4.2 Bragg’s Composition Law.- 4.3 The Stopping Power of a Medium for Particles and Antiparticles: The Z3 Correction to the Bethe-Bloch Formula.- 4.4 Passage of Multiple-Charged Ions Through Matter.- 4.5 The Passage of Electrons Through Matter.- Fifth Lecture.- 5.1 Channelling.- 5.2 The Shadow Effect (Blocking).- Sixth Lecture.- 6.1 Interaction of Molecular Ions with Matter.- 6.2 Application of the Method of Computer Simulation.- II. Interaction of Electromagnetic Radiation with Matter.- Seventh Lecture.- 7.1 Passage of ? Radiation Through Matter.- 7.2 Interaction of ? Quanta with the Atomic Nuclei of Matter. The Mössbauer Effect.- Eighth Lecture.- 8.1 Rotation of the Plane of Polarization of Light as an Effect Due to Parity Violation in Atoms.- 8.2 Experimental Observation of Parity Violation in Atoms.- Ninth Lecture.- 9.1 Electromagnetic Radiation Caused by the Passage of Particles Through Matter: Direct Processes.- 9.2 Characteristic Radiation of the Atoms of a Medium Due to the Interaction of Particles with Matter.- 9.3 Angular Anisotropy of the Characteristic Radiation. The Alignment Phenomenon of Atoms in a Medium.- 9.4 Electromagnetic Radiation in Charged Particle Channelling.- III. Interaction of Neutrons with Matter.- Tenth Lecture.- 10.1 Elementary Theory of the Slowing Down of Neutrons.- 10.2 The Mean Stopping Time of a Neutron: The Stopping Path.- Eleventh Lecture.- 11.1 Motion of Neutrons Upon Thermalization: The Diffusion Coefficient.- 11.2 The Equation of Diffusion: The Mean Lifetime of the Neutron.- 11.3 Typical Problems of Thermal Neutron Diffusion Theory.- 11.3.1A Stationary Point Source in an Infinite Medium.- 11.3.2 Boundary Conditions for Neutrons Passing from a Medium to Vacuum.- 11.3.3 Diffusion of Thermal Neutrons from a Point-Like Pulsed Source.- Twelfth Lecture.- 12.1 Neutron Diffraction in a Crystal.- 12.2 Coherent and Incoherent Neutron Scattering.- 12.3 The Influence of Thermal Oscillations of the Lattice: The Phenomenon of Inelastic Diffraction.- 12.4 Neutron Scattering by Polycrystals.- IV. Mesoatomic and Mesomolecular Processes.- Thirteenth Lecture.- 13.1 Mesoatoms and Their Properties.- 13.2 Cascade of Electromagnetic Transitions in Mesoatoms: Influence of the Medium on a Mesoatomic Cascade.- 13.3 Methods Involving Pions and Muons in Chemical Studies.- 13.3.1 Analysis of the Composition and Structure of Matter Based on Mesonic X-Rays.- 13.3.2 Charge Exchange of ? Mesons on Hydrogen Nuclei.- 13.3.3 Polarization and Depolarization of Muons in Muonic Atoms.- 13.3.4 Muonium.- Fourteenth Lecture.- 14.1 The Formation of Mesomolecules.- 14.2 Muonic Catalysis of Nuclear Fusion.- References to Figures and Tables.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List