Inert Gases: Potentials, Dynamics, and Energy Transfer in Doped Crystals

Author:   M.L. Klein ,  R.A. Aziz ,  S.S. Cohen ,  H. Dubost
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1984
Volume:   34
ISBN:  

9783642822230


Pages:   268
Publication Date:   22 December 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $258.72 Quantity:  
Add to Cart

Share |

Inert Gases: Potentials, Dynamics, and Energy Transfer in Doped Crystals


Add your own review!

Overview

Research involving the chemical physics of the inert or rare gases continues unabated. This small volume is meant to deal with advances that have occurred in three selected areas over the past decade. It forms a natural outgrowth of earlier reviews and volumes that have dealt almost exclusively with pure rare-gas solids. Originally, a single chapter was envisaged to cover the topic of alloys and impurities in solid rare gases. However, over the past ten years this single chapter spawned many offshoots and eventually the project became too large for a single volume. Thus the present book contains only a small subset of possbile topics involving rare-gas solids intentionally doped with impurities. Chapter 1 gives a brief overview of current research devoted to the rare gases. This is followed by a comprehensive, self-contained chapter dealing with the most recent developments in the area of interatomic inter­ actions. Chapter 3 is concerned with the lattice dynamics of rare-gas solids doped with an impurity which is either another rare-gas or a small molecule. The final chapter deals with the spectroscopy of vibrating and rotating di­ atomic impurities in rare-gas solids. The birth of this volume was not without its labour pains. I should like to take this opportunity to thank the various people who have at one time or another been involved throughout its gestation period. Clearly, many important topics are omitted from this volume.

Full Product Details

Author:   M.L. Klein ,  R.A. Aziz ,  S.S. Cohen ,  H. Dubost
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1984
Volume:   34
Dimensions:   Width: 15.50cm , Height: 1.50cm , Length: 23.50cm
Weight:   0.435kg
ISBN:  

9783642822230


ISBN 10:   3642822231
Pages:   268
Publication Date:   22 December 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Argon and Its Companions..- 1.1 Prologue: Inert, Rare or Noble?.- 1.2 Research with Inert Gases.- 1.3 Outline of the Present Book.- References.- 2. Interatomic Potentials for Rare-Gases: Pure and Mixed Interactions.- 2.1 Background.- 2.2 What Probes What?.- 2.3 Review of Recent Research on Pure Interactions.- 2.4 Review of Recent Research on Unlike Interactions.- 2.5 Combining Rules.- 2.6 Conclusions.- Appendix: 2.A Interatomic Potential Functions.- 2.B Interatomic Potential Parameters.- 2.C Predictions of Collisons Cross-Sections by Potentials.- References.- 3. Dynamics of Impure Rare-Gas Crystals.- 3.1 Background.- 3.2 Lattice Dynamics of Impure Crystals.- 3.3 Theoretical Studies.- a) Potentials.- b) Relaxation Effects.- c) Three-Body Forces.- d) Phonon Density of States.- 3.4 Experimental Studies.- a) Argon Doped with Krypton.- b) Argon Doped with Neon.- c) Argon Doped with Helium.- d) Argon Doped with Xenon.- e) Krypton Doped with Argon.- f) Krypton Doped with Xenon.- 3.4.2 Molecules in RGS.- a) Homonuclear Diatomics.- b) Heteronuclear Diatomics.- c) RGS Doped with Methane.- a) Molecular Ions.- b) Molecules.- c) Atoms.- 3.5 Summary.- References.- 4. Spectroscopy of Vibrational and Rotational Levels of Diatomic Molecules in Rare-Gas Crystals.- 4.1 Background.- 4.2 Experimental Techniques and Results.- a) Sample Preparation.- b) Spectroscopy (Conventional Versus Laser).- c) Saturation Spectroscopy or Hole Burning.- d) Time-Resolved Spectroscopy.- a) Vibrational Transitions.- b) Rotational Transitions.- c) Phonon Sidebands.- a) Infrared Spectroscopy.- b) Visible Spectroscopy.- 4.3 Intermolecular Interaction in Rare-Gas Crystals Containing Molecular Defects.- a) Atom-Atom Potential.- b) Multiparameter Potential Functions.- c) Ab Initio Potential Surfaces.- d) ChargeTransfer and Hydrogen Bonding.- a) Energy Levels.- b) Relaxation Processes.- 4.4 Perturbation of Energy Levels.- a) Effect of Isotropic Terms.- b) Effect of Internal Molecular Motions.- c) Description of Lattice Vibrations Through Molecular Dynamics.- d) Phonon Sidebands in IR Spectra of the Guest Molecule.- a) Vibrational Matrix Shift.- b) Rotational Matrix Shift.- 4.5 Population Relaxation Processes.- a) Microscopic Processes Among Molecules in Rare-Gas Crystals.- b) Microscopic Probabilities for Vibrational Energy Transfer.- c) Macroscopic Kinetics for Vibrational Energy Transfer.- d) Comparison Between Theory and Experiment.- a) The Direct Process.- b) Raman and Orbach Processes.- 4.6 Spectral Line Shapes and Dephasing Processes.- a) Isolated Vibrational Levels with a Large Spacing.- b) Additional Low-Energy Levels in the Molecule.- 4.7 Concluding Remarks.- References.- Additional References with Titles.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List