|
|
|||
|
||||
OverviewFull Product DetailsAuthor: Robert F. Cook (National Institute of Standards and Technology (NIST), MD, USA)Publisher: John Wiley & Sons Inc Imprint: Sybex Inc.,U.S. Dimensions: Width: 1.00cm , Height: 1.00cm , Length: 1.00cm Weight: 0.454kg ISBN: 9781394207206ISBN 10: 1394207204 Pages: 400 Publication Date: 17 March 2025 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsPreface xiii Abbreviations and Symbols xv 1 Brittle Fracture Fundamentals 1 1.1 Brittle Components and Materials 1 1.1.1 Components 2 1.1.2 Materials 3 1.2 Transformations on Brittle Fracture 4 1.2.1 Observations 4 1.2.2 Energy Balance 6 1.3 Equilibrium Fracture on Uniform Loading 7 1.3.1 Work and Elastic Energy 7 1.3.2 Mechanical Energy and Surface Energy 8 1.3.3 The Griffith Equation 9 1.3.4 Configurational Forces: G and R 12 1.4 Equilibrium Fracture on Localized Loading 13 1.4.1 Mechanical Energy 13 1.4.2 The Roesler Equation 13 1.5 Stress-Intensity Factor and Toughness 17 1.6 Nonequilibrium Fracture 20 1.6.1 Unstable Adiabatic Fracture 20 1.6.2 Stable Isothermal Fracture 22 1.7 Fracture by Spatially Varying Loading 26 1.7.1 Stress-Intensity Factor for Fracture at an Inclusion 26 1.7.2 Crack Initiation 28 1.8 Summary 31 References 33 2 Indentation Cracking Behavior 37 2.1 Sharp Indentation of Brittle Materials 37 2.1.1 Observations: Morphology 37 2.1.2 Observations: Materials 41 2.1.3 Residual Stress Field Model 44 2.2 Indenter Shape Effects 47 2.3 Material Effects 53 2.4 Initiation 57 2.5 Summary and Discussion 61 References 63 3 Indentation Strengths: Invariant Toughness Materials 67 3.1 Indentation Strength of Brittle Materials 67 3.1.1 Historical Context 67 3.1.2 Experimental Methodology 68 3.2 Fracture Mechanics of Indentation Strength 70 3.2.1 Ideal Indentations 70 3.2.2 Precursor Crack Extension 74 3.2.3 Generalized Analysis 77 3.3 Indentation Strength Variations 79 3.3.1 Contact Angle 79 3.3.2 Spherical, Rounded, and Flat Punch Contacts 80 3.3.3 Lateral Cracked Contacts 87 3.3.4 Impacts 93 3.3.5 Contacts in Stressed and Layered Components 96 3.3.6 Uncracked Contacts 104 3.4 Indentation Strength Observations 108 3.4.1 Contact Angle Effects 108 3.4.2 Contact Radius Effects 110 3.4.3 Lateral Crack Effects 112 3.4.4 Impact Energy Effects 114 3.4.5 Surface Stress Effects 119 3.4.6 Subthreshold Effects 126 3.5 Summary and Discussion 131 References 132 4 Indentation Strengths: Toughened Materials 141 4.1 Introduction 141 4.2 Microstructural Toughening in Brittle Materials 142 4.2.1 Thermodynamics and the Energy Framework 142 4.2.2 Mechanics and the Stress Framework 143 4.2.3 Crack Wake Toughening: Overview 144 4.2.4 Crack Wake Toughening: Analysis 149 4.3 Toughened Materials Strength Analyses 150 4.4 Toughened Materials Strength Observations 153 4.4.1 Alumina 153 4.4.2 Silicon Nitride 161 4.4.3 Glass-Ceramics 163 4.4.4 Ferroelastics 165 4.4.5 Alumina Composites 168 4.4.6 Zirconia 172 4.4.7 Alumina Impact 177 4.5 Summary and Discussion 180 References 182 5 Indentation Strengths: Toughness Estimation 187 5.1 Introduction 187 5.2 Methods 188 5.2.1 Analysis 188 5.2.2 Experiment 190 5.3 Results 192 5.3.1 Relation to Conventional Method 192 5.3.2 Refinement of Modified Technique 193 5.3.3 Application of Modified Technique 196 5.4 Discussion 198 5.5 Conclusions 200 References 200 6 Indentation Strengths: Reactive Environments 203 6.1 Introduction 203 6.1.1 Background Concepts 203 6.1.2 Background Observations 205 6.2 Reactive Strength and Lifetime Analyses 210 6.2.1 Empirical Crack Velocity: Griffith Flaws 210 6.2.2 Empirical Crack Velocity: Indentation Flaws 212 6.2.3 Effect of Lateral Cracks and Microstructure 214 6.2.4 Thermally Activated Crack Velocity 216 6.3 Reactive Strengths Observations 220 6.3.1 Single Contact Loads 220 6.3.2 Multiple Contact Loads 221 6.3.3 Predictions 223 6.3.4 Surface Stress Effects 227 6.3.5 Probabilistic Methods 231 6.4 Summary and Discussion 233 References 236 7 Dynamic Fragmentation Patterns in Flexed Ceramic Disks 241 7.1 Introduction 241 7.2 Number of Fragments 243 7.3 Distribution of Fragment Sizes 248 7.4 Crack Branching Distances 251 7.5 Application Examples 254 7.5.1 Si Die Failure 255 7.5.2 Ceramic Microstructure Development 256 7.5.3 Branching Radius Variation 256 7.6 Conclusions 257 References 258 8 Edge Chipping at Small Scales and Strengths of Diced Components 263 8.1 Introduction 263 8.2 Sharp Contact Cracking at Edges 265 8.2.1 Contact Morphology 265 8.2.2 Crack Lengths 266 8.2.3 Chipping Threshold 269 8.3 Edge Chip Size Variation 270 8.4 Edge Chip Strength Variation 273 8.4.1 Strength Measurements 273 8.4.2 Strength Analysis and Prediction 274 8.5 Summary 277 References 278 9 Scratches and Lateral Cracking at Linear Sharp Contacts 279 9.1 Introduction 279 9.2 Analysis 282 9.2.1 Contact Deformation 283 9.2.2 Lateral Cracking 285 9.3 Results 288 9.3.1 Point Contacts 288 9.3.2 Dragged and Rolled Contacts 290 9.4 Mohs Scale Minerals 293 9.5 Summary and Discussion 298 References 300 10 Strengths of Silicon Devices Determined by Wafer Backgrinding 303 10.1 Introduction 303 10.1.1 Semiconductor Device Fabrication 303 10.1.2 Wafer Backgrinding and Die Strength 304 10.2 Linear Flaws in Si 306 10.2.1 Single Scratches 306 10.2.2 Multiple Striations 307 10.3 Strength of Si 309 10.3.1 Indentation Fracture Mechanics—Linear Contact Flaws 309 10.3.2 Indentation Fracture Mechanics—General Contact Flaws 313 10.3.3 Observations—Controlled Flaws 316 10.3.4 Observations—Grinding Flaws 318 10.4 Grinding Controlled Strength Model 322 10.4.1 Analysis 322 10.4.2 Results 323 10.5 Summary 327 References 328 11 Strength and Toughness of Cordierite Glass-Ceramic Composites 331 11.1 Introduction 331 11.2 Experimental Methods 332 11.2.1 Materials 332 11.2.2 Contact Properties 334 11.2.3 Toughness 338 11.2.4 Strength 338 11.3 Analysis Methods 339 11.3.1 Toughness Variation 339 11.3.2 Indentation Strength Variation 340 11.3.3 Intrinsic Strength Variation 340 11.4 Results 341 11.4.1 Toughness Measurements 341 11.4.2 Strength Measurements 343 11.5 Conclusions 345 References 345 Appendix 347 12 Crack Propagation in Toughened Materials 351 12.1 Introduction 351 12.2 Indentation Crack Extension Analyses 353 12.2.1 Residual Field Variation 353 12.2.2 Similar Driving and Resistance Fields 354 12.2.3 Dissimilar Driving and Resistance Fields 355 12.2.4 Piecewise Continuous Resistance Field 356 12.3 Crack Propagation Observations 359 12.3.1 Polycrystalline Alumina 359 12.3.2 Phase-Transforming Zirconia 361 12.3.3 Ion-Exchanged Glass 364 12.4 Summary 366 References 367 13 Summary and Future 369 13.1 Introduction 369 13.2 Materials Comparisons 370 13.2.1 Fracture in Inert Environments 370 13.2.2 Fracture in Reactive Environments: Master Maps 373 13.3 Future Topics 375 13.3.1 Thermal Shock 375 13.3.2 Concurrent Flaw Distributions 377 13.3.3 Indentation Measurements 378 References 379 Index 381ReviewsAuthor InformationRobert F. Cook, PhD, is a former NIST Fellow at the National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA, and an independent scientist. He was a 2008 recipient of a U.S. Department of Commerce Silver Medal for Scientific/Engineering Achievement and is the author of over 200 peer-reviewed publications, 16 patents, and the book Particle Strengths. Tab Content 6Author Website:Countries AvailableAll regions |
||||