Impact of Weather Conditions on Macroscopic Traffic Stream Variables in an Intelligent Transportation System

Author:   Archana Nigam
Publisher:   Archana Nigam
ISBN:  

9781805458395


Pages:   224
Publication Date:   20 November 2022
Format:   Paperback
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $84.48 Quantity:  
Add to Cart

Share |

Impact of Weather Conditions on Macroscopic Traffic Stream Variables in an Intelligent Transportation System


Add your own review!

Overview

Accurate prediction of the macroscopic traffic stream variables such as speed and flow is essential for the traffic operation and management in an Intelligent Transportation System (ITS). Adverse weather conditions like fog, rainfall, and snowfall affect the driver's visibility, vehicle's mobility, and road capacity. Accurate traffic forecasting during inclement weather conditions is a non-linear and complex problem as it involves various hidden features such as time of the day, road characteristics, drainage quality, etc. With recent computational technologies and huge data availability, such a problem is solved using data-driven approaches. Traditional data-driven approaches used shallow architecture which ignores the hidden influencing factor and is proved to have limitations in a high dimensional traffic state. Deep learning models are proven to be more accurate for predicting traffic stream variables than shallow models because they extract the hidden features using the layerwise architecture. The impact of weather conditions on traffic is dependent on various hidden features. The rainfall effect on traffic is not directly proportional to the distance between the weather stations and the road segment because of terrain feature constraints. The prolonged rainfall weakens the drainage system, affects soil absorption capability, which causes waterlogging. Therefore, to capture the spatial and prolonged impact of weather conditions, we proposed the soft spatial and temporal threshold mechanism. Another concern with weather data is the traffic data has a high spatial and temporal resolution compared to it. Therefore, missing weather data is difficult to ignore, the spatial interpolation techniques such as Theissen polygon, inverse distance weighted method, and linear regression methods are used to fill out the missing weather data. i

Full Product Details

Author:   Archana Nigam
Publisher:   Archana Nigam
Imprint:   Archana Nigam
Dimensions:   Width: 15.20cm , Height: 1.20cm , Length: 22.90cm
Weight:   0.304kg
ISBN:  

9781805458395


ISBN 10:   1805458396
Pages:   224
Publication Date:   20 November 2022
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List