Highly Anisotropic Crystals

Author:   E.I. Givargizov
Publisher:   Springer
Edition:   Softcover reprint of the original 1st ed. 1987
ISBN:  

9789401081610


Pages:   394
Publication Date:   05 October 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $336.35 Quantity:  
Add to Cart

Share |

Highly Anisotropic Crystals


Add your own review!

Overview

Full Product Details

Author:   E.I. Givargizov
Publisher:   Springer
Imprint:   Springer
Edition:   Softcover reprint of the original 1st ed. 1987
Dimensions:   Width: 15.50cm , Height: 2.10cm , Length: 23.50cm
Weight:   0.629kg
ISBN:  

9789401081610


ISBN 10:   9401081611
Pages:   394
Publication Date:   05 October 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 / Highly-Anisotropic Crystals in Nature.- 1.1. Minerals.- 1.1.1. Highly-Anisotropic Minerals in Relation to their Structures.- 1.1.1.1. Silicates.- 1.1.1.2. Hydroxides.- 1.1.1.3. Sulphides and Sulphosalts.- 1.1.1.4. Elements.- 1.1.2. Highly-Anisotropic Minerals as a Result of the Symmetry of the Environment.- 1.1.3. Highly-Anisotropic Minerals as a Result of Growth Kinetics.- 1.1.3.1. Growth of Mineral Fibers from the Vapor Phase.- 1.1.3.2. Growth of Mineral Fibers from Solutions.- 1.1.3.3. Growth of Mineral Fibers from the Solid State.- 1.1.4. Conclusions.- 1.2. Snow Crystals.- 1.3. Highly-Anisotropic Crystals in Living Organisms.- References.- 2 / Growth of Whiskers from the Vapor Phase.- 2.1. Whisker Growth Caused by the Crystal Structure.- 2.2. Growth of Whiskers under External Fields.- 2.2.1. Growth of Metal Whiskers by Salt Reduction.- 2.2.2. Whisker Growth by Condensation of Vapors.- 2.2.3. Growth of Whiskers in Electrical Discharge.- 2.2.4. Growth of Whiskers on Cathodes.- 2.3. Principal Models and Theories of Whisker Growth.- 2.3.1. Diffusion-Dislocation Models and Theories.- 2.3.2. The Vapor-Liquid-Solid (VLS) Mechanism.- 2.4. Kinetics of the VLS Whisker Growth.- 2.4.1. The Technique of Kinetic Experiments.- 2.4.2. Growth Rate Dependence on Diameter and Role of Surface Energy.- 2.4.3. Determination of Kinetic Coefficients from Whisker Experiments.- 2.4.4. The Quadratic Kinetic Law and Determination of Surface Energies.- 2.4.5. Poly-Nuclear Growth.- 2.4.6. Radial Periodic Instability.- 2.4.7. The Role of Surface Diffusion in VLS Whisker Growth.- 2.4.8. The Rate-Determining Step.- 2.4.9. Liquid Phase Effectivity Coefficient.- 2.5. The Diffusion-Droplet Model of Whisker Growth.- 2.5.1. Inadequacy of the Diffusion-Dislocation Model and Efficiency of the VLS Mechanism.- 2.5.2. On Criteria of Various Growth Mechanisms of Whiskers.- 2.6. Some Processes Related to VLS Whisker Growth.- 2.6.1. Growth of Whiskers from their Bases.- 2.6.2. Growth of Whiskers with Liquids on Side Faces.- 2.6.3. Growth of Amorphous and Polycrystalline Whiskers (‘fibers’).- 2.6.4. Protuberances on Crystalline Faces.- 2.6.5. ‘Negative Whiskers’.- 2.7. Controlled Growth of Whiskers.- 2.7.1. Three Levels of Control in Whisker Growth.- 2.7.1.1. Solvent Requirements.- 2.7.1.2. Chemical Reaction Requirements.- 2.7.1.3. Supersaturation Requirements.- 2.7.1.4. Temperature Requirements.- 2.7.1.5. Substrate Requirements.- 2.7.1.6. Regular Arrays of Whiskers.- 2.7.1.7. Some Concluding Remarks.- 2.7.2. Preparation of Whiskers.- 2.7.2.1. Elemental Semiconductors.- 2.7.2.2. Metals.- 2.7.2.3. Compounds.- 2.7.2.4. Concluding Remarks.- References.- 3 / Growth of Whiskers from the Liquid Phase.- 3.1. Growth from Solutions 230.- 3.1.1. Whisker Growth from Aqueous and Other Low-Temperature Solutions.- 3.1.1.1. Growth on Porous Substrates.- 3.1.1.2. Whisker Growth in Efflorescence.- 3.1.1.3. Gel Growth of Whiskers.- 3.1.1.4. Whisker Growth in the Presence of Long-Chain Molecules.- 3.1.1.5. Other Cases of Whisker Growth in Solutions. The Role of Impurities and Supersaturations.- 3.1.2. Growth of Whiskers from High-Temperature Solutions.- 3.1.3. Whiskers Formed by Electrolysis.- 3.1.4. Dendritic Growth 241.- 3.2. Growth of Whiskers (‘fibers’) from Melt.- 3.2.1. Shaping Methods.- 3.2.2. The Pedestal Growth Method 245.- References.- 4 / Growth of Whiskers from the Solid State.- 4.1. Spontaneous Growth from the Solid State.- 4.2. ‘Corrosion Whiskers’ from the Solid State.- 4.2.1. Whiskers by Short-Circuit Diffusion in Solids.- 4.2.2. Corrosion Whiskers by Superionic Conductivity.- 4.2.3. Whiskers Formed by Internal Oxidation of Solids.- 4.3. Growth of Whiskers by Thermal Gradient Transport in Solids.- 4.4. Growth of Whiskers by Electrotransport.- 4.4.1. Whiskers at High Current Densities.- 4.4.2. Whiskers by Electrotransport in Superionics.- 4.5. Highly-Anisotropic Inclusions in Solids.- 4.6. Concluding Remarks 274.- References.- 5 / Growth of Plate-Like Crystals.- 5.1. Plate-Like Growth Due to Structure of the Material.- 5.1.1. Plate-Like Growth Due to Highly-Anisotropic Internal Structure.- 5.1.2. Platelet Growth Caused by Two-Dimensional Imperfections.- 5.2. Growth of Plate-Like Crystals from the Vapor Phase.- 5.3. Growth of Platelets from Solutions.- 5.4. Growth from the Melt.- 5.5. Growth of Hollow Whiskers 305.- References.- 6 / Growth of Highly-Anisotropic Crystalline Structures.- 6.1. In situ Composites.- 6.1.1. Dendrite Growth: Single Dendrites and Arrays.- 6.1.2. Unidirectional Solidification of Eutectics.- 6.1.2.1. Principal Morphologies and Classification of In situ Composites.- 6.1.2.2. Formation Mechanisms and Principal Regularities of Eutectic Growth.- 6.1.2.3. Off-Eutectics.- 6.1.2.4. The Role of Impurities in Eutectic Solidification.- 6.1.2.5. Orientation Relationships in Highly-Anisotropic Eutectic Composites.- 6.1.2.6. Coarsening of In situ Composites.- 6.1.2.7. Thin Film Composites.- 6.1.2.8. Principal Techniques for Preparation of In situ Composites.- 6.1.2.9. The Most Typical and Important Combinations of Materials in Composites.- 6.1.3. In situ Composites by Solid-State Transformations.- 6.2. Highly-Anisotropic Surface Textures.- 6.2.1. Impurity-Seeded Cones.- 6.2.2. Imperfection-Induced, or ‘Intrinsic’, Cones.- 6.2.3. Whisker Growth on Sputtered Surfaces.- 6.3. Highly-Anisotropic Structures in Deposited Films.- References.- 7 / Properties of Highly-Anisotropic Crystals.- 7.1. Mechanical Properties.- 7.2. Magnetic Properties.- 7.3. Electrical Properties.- 7.4. Optical Properties.- 7.5. Some Physico-Chemical Properties 371.- References.- 8 / Applications.- 8.1. Composites.- 8.2. Textured Surfaces for Solar Energy Conversion.- 8.3. Electronics.- 8.3.1. Instrumentation.- 8.3.2. Field-Emission Cathodes.- 8.4. Highly-Anisotropic Crystals as Unique Objects for Physical Investigations.- References.- 9 / Conclusions.- Substance Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List