High Performance Fuel-Breathing Microfluidic Fuel Cells

Author:   Yifei Wang ,  王夷飞
Publisher:   Open Dissertation Press
ISBN:  

9781361041956


Publication Date:   26 January 2017
Format:   Hardback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $155.76 Quantity:  
Add to Cart

Share |

High Performance Fuel-Breathing Microfluidic Fuel Cells


Add your own review!

Overview

This dissertation, High Performance Fuel-breathing Microfluidic Fuel Cells by Yifei, Wang, 王夷飞, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of the thesis entitled HIGH PERFORMANCE FUEL-BREATHING MICROFLUIDIC FUEL CELLS Submitted by Yifei, Wang for the degree of Doctor of Philosophy at The University of Hong Kong in September 2016 Fuel cells are broadly regarded as one of the most promising power sources. A fuel cell is generally composed of a thin membrane electrolyte sandwiched by two porous electrodes, which has a similar structure with batteries. Fuel cells are very advantageous considering their high energy density, uninterrupted operation and environmental friendliness. To date, the application of this technology is vigorously promoted by the government and industry especially for large-power applications. As for applications with small rated power, the progress is, however, impeded by their high cost, leading to less competitiveness against the mature battery technology. To lower down the cost, microfluidic fuel cell (MFC), also known as the membraneless fuel cell or laminar flow fuel cell, has been proposed recently. A MFC generally utilizes two laminar flows in parallel as electrolyte instead of any solid membrane, therefore, lowering the fabrication cost. To prevent the flows from violent mixing, micro-channel, normally with characteristic length less than 1mm, is requisite. In this manner, the mixing process is dominated by slow diffusion, forming a flow interface in the middle of the channel as a virtual membrane. Despite of its cost advantage, there are still many unsolved problems in MFCs such as poor energy density, trade-off between cell performance and fuel utilization, complex fluidic management, etc. In this thesis, research works on MFC development have been done to improve their cell performance, energy efficiency, energy density, long-term stability, etc. In addition, a novel MFC stacking strategy has been proposed, which was proved to be competent for practical applications.  First, conventional liquid-feed MFCs with either co-flow or counter-flow configuration were studied. Their cell performance and fuel utilization were optimized, which were used as benchmarks in subsequent studies.  To solve the intractable restrictions in liquid-feed MFCs, vapor-feed MFCs were proposed which breathed fuel vapor from outside the cell instead of acquiring dissolved fuel from the inside electrolyte, therefore, -2 achieving both high power density (55.4mWcm ) and high energy efficiency (9.4%) at the same time.  To better understand the mechanism behind its performance, numerical (R) simulation on vapor-feed MFCs was also conducted using COMSOL 4.2.  To achieve practical power output, a circular stacking strategy was proposed, which was especially suitable for fuel-breathing MFCs. A six- cell stack was designed and tested, proving that such a stacking strategy was not only highly efficient but also potentially robust to external flow disturbance.  The same stacking strategy was also applied to H -fueled MFCs to further improve the power output. By utilizing Al-H O reaction for H generation, 2 2 the proposed Al-feed MFC stack achieved a peak power output of 530mW. Meanwhile, difficulties in hydrogen storage and waste electrolyte management were eliminated.  In MFCs with enlarged electrode areas, cathode flooding was inevitably aggravated and cell performance dropped significantly. By cracking the cathode catalyst layer, this problem was greatly alleviated, leading to a m

Full Product Details

Author:   Yifei Wang ,  王夷飞
Publisher:   Open Dissertation Press
Imprint:   Open Dissertation Press
Dimensions:   Width: 21.60cm , Height: 1.80cm , Length: 27.90cm
Weight:   0.962kg
ISBN:  

9781361041956


ISBN 10:   1361041951
Publication Date:   26 January 2017
Audience:   General/trade ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List