Global Aspects of Classical Integrable Systems

Author:   Richard H. Cushman ,  Larry M. Bates ,  Richard H Cushman ,  Larry M Bates
Publisher:   Birkhauser Verlag AG
Edition:   Softcover reprint of the original 1st ed. 1997
ISBN:  

9783034898171


Pages:   435
Publication Date:   05 October 2012
Replaced By:   9783034809177
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $157.95 Quantity:  
Add to Cart

Share |

Global Aspects of Classical Integrable Systems


Add your own review!

Overview

This book gives a complete global geometric description of the motion of the two di­ mensional hannonic oscillator, the Kepler problem, the Euler top, the spherical pendulum and the Lagrange top. These classical integrable Hamiltonian systems one sees treated in almost every physics book on classical mechanics. So why is this book necessary? The answer is that the standard treatments are not complete. For instance in physics books one cannot see the monodromy in the spherical pendulum from its explicit solution in terms of elliptic functions nor can one read off from the explicit solution the fact that a tennis racket makes a near half twist when it is tossed so as to spin nearly about its intermediate axis. Modem mathematics books on mechanics do not use the symplectic geometric tools they develop to treat the qualitative features of these problems either. One reason for this is that their basic tool for removing symmetries of Hamiltonian systems, called regular reduction, is not general enough to handle removal of the symmetries which occur in the spherical pendulum or in the Lagrange top. For these symmetries one needs singular reduction. Another reason is that the obstructions to making local action angle coordinates global such as monodromy were not known when these works were written.

Full Product Details

Author:   Richard H. Cushman ,  Larry M. Bates ,  Richard H Cushman ,  Larry M Bates
Publisher:   Birkhauser Verlag AG
Imprint:   Birkhauser Verlag AG
Edition:   Softcover reprint of the original 1st ed. 1997
Dimensions:   Width: 15.50cm , Height: 2.30cm , Length: 23.50cm
Weight:   0.694kg
ISBN:  

9783034898171


ISBN 10:   3034898177
Pages:   435
Publication Date:   05 October 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Replaced By:   9783034809177
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

I. The harmonic oscillator.- 1. Hamilton’s equations and Sl symmetry.- 2. S1 energy momentum mapping.- 3. U(2) momentum mapping.- 4. The Hopf fibration.- 5. Invariant theory and reduction.- 6. Exercises.- II. Geodesics on S3.- 1. The geodesic and Delaunay vector fields.- 2. The SO(4) momentum mapping.- 3. The Kepler problem.- 4. Exercises.- III The Euler top.- 1. Facts about SO(3).- 2. Left invariant geodesics.- 3. Symmetry and reduction.- 4. Qualitative behavior of the reduced system.- 5. Analysis of the energy momentum map.- 6. Integration of the Euler-Arnol’d equations.- 7. The rotation number.- 8. A twisting phenomenon.- 9. Exercises.- IV. The spherical pendulum.- 1. Liouville integrability.- 2. Reduction of the Sl symmetry.- 3. The energy momentum mapping.- 4. Rotation number and first return time.- 5. Monodromy.- 6. Exercises.- V. The Lagrange top.- 1. The basic model.- 2. Liouville integrability.- 3. Reduction of the right Sl action.- 4. Reduction of the left S1 action.- 5. The Poisson structure.- 6. The Euler-Poisson equations.- 7. The energy momemtum mapping.- 8. The Hamiltonian Hopf bifurcation.- 9. Exercises.- Appendix A. Fundamental concepts.- 1. Symplectic linear algebra.- 2. Symplectic manifolds.- 3. Hamilton’s equations.- 4. Poisson algebras and manifolds.- 5. Exercises.- Appendix B. Systems with symmetry.- 1. Smooth group actions.- 2. Orbit spaces.- 2.1 Orbit space of a proper action.- 2.2 Orbit space of a free action.- 2.3 Orbit space of a locally free action.- 3. Momentum mappings.- 3.1 General properties.- 3.2 Normal form.- 4. Reduction: the regular case.- 5. Reduction: the singular case.- 6. Exercises.- Appendix C. Ehresmann connections.- 1. Basic properties.- 2. The Ehresmann theorems.- 3. Exercises.- Appendix D. Action angle coordinates.- 1.Local action angle coordinates.- 2. Monodromy.- 3. Exercises.- Appendix E. Basic Morse theory.- 1. Preliminaries.- 2. The Morse lemma.- 3. The Morse isotopy lemma.- 4. Exercises.- Notes.- References.- Acknowledgements.

Reviews

Ideal for someone who needs a thorough global understanding of one of these systems [and] who would like to learn some of the tools and language of modern geometric mechanics. The exercises at the end of each chapter are excellent. The book could serve as a good supplementary text for a graduate course in geometric mechanics. --SIAM Review


Ideal for someone who needs a thorough global understanding of one of these systems [and] who would like to learn some of the tools and language of modern geometric mechanics. The exercises at the end of each chapter are excellent. The book could serve as a good supplementary text for a graduate course in geometric mechanics. --SIAM Review


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List