Genetics and Genomics of Plants

Author:   Arit Efretuei
Publisher:   Arcler Education Inc
ISBN:  

9781680945584


Pages:   234
Publication Date:   30 November 2016
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $372.60 Quantity:  
Add to Cart

Share |

Genetics and Genomics of Plants


Add your own review!

Overview

Plant genetics and genomics is a growing and constantly evolving field of study. Plant genetics deals with heredity in plants, specifically mechanisms of hereditary transmission and variation of inherited characteristics. Plant genetics differs from animal genetics in a number of ways: somatic mutations can contribute to the germ line more easily as flowers develop at the end of branches composed of somatic cells; polyploidy is more common; and plants additionally contain chloroplastic DNA. Like mitochondria, chloroplasts have their own DNA, complicating pedigrees somewhat. Like animals, plants have somatic mutations regularly, but these mutations can contribute to the germ line with ease, since flowers develop at the ends of branches composed of somatic cells. People have known of this for centuries, and mutant branches are called “sports”. If the fruit on the sport is economically desirable, a new cultivar may be obtained. Some plant species are capable of self-fertilization, and some are nearly exclusively self-fertilizers. This means that a plant can be both mother and father to its offspring, a rare occurrence in animals. Scientists and hobbyists attempting to make crosses between different plants must take special measures to prevent the plants from self-fertilizing. Plants are generally more capable of surviving, and indeed flourishing, as polyploids. Polyploidy, the presence of extra sets of chromosomes, is not usually compatible with life in animals. In plants, polyploid individuals are created frequently by a variety of processes, and once created usually cannot cross back to the parental type. Polyploid individuals, if capable of self-fertilizing, can give rise to a new genetically distinct lineage, which can be the start of a new species. This is often called “instant speciation”. Polyploids generally have larger fruit, an economically desirable trait, and many human food crops, including wheat, maize, potatoes, peanuts, strawberries and tobacco, are either accidentally or deliberately created polyploids. The use of genetically engineered crops has helped many farmers deal with pest problems that reduce their crop production. The impact of pest-resistant crops has led to a much higher yield for farmers in today’s world. They can use less pesticides which reduces the chemicals that they put into the ground. Certain engineered crops have led to farmers all over the world to increase crop yield exponentially in recent years.

Full Product Details

Author:   Arit Efretuei
Publisher:   Arcler Education Inc
Imprint:   Arcler Education Inc
ISBN:  

9781680945584


ISBN 10:   1680945580
Pages:   234
Publication Date:   30 November 2016
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Arit Efretuei obtained her PhD in Agriculture from the University of Reading, UK in 2015. Her interests are in crop nutrient uptake, soil nutrient management and mitigation of soil nutrient losses to the environment. She is presently working as a freelance agronomic writer.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List