Fusion Plasma Physics

Author:   Weston M. Stacey (Georgia Institute of Technology)
Publisher:   Wiley-VCH Verlag GmbH
ISBN:  

9783527405862


Pages:   571
Publication Date:   30 September 2005
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $213.95 Quantity:  
Add to Cart

Share |

Fusion Plasma Physics


Add your own review!

Overview

Full Product Details

Author:   Weston M. Stacey (Georgia Institute of Technology)
Publisher:   Wiley-VCH Verlag GmbH
Imprint:   Blackwell Verlag GmbH
Dimensions:   Width: 17.20cm , Height: 3.10cm , Length: 24.10cm
Weight:   1.071kg
ISBN:  

9783527405862


ISBN 10:   3527405860
Pages:   571
Publication Date:   30 September 2005
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1 Basic Physics 1 1.1 Fusion 1 1.2 Plasma 6 1.3 Coulomb Collisions 9 1.4 Electromagnetic Theory 15 2 Motion of Charged Particles 21 2.1 GyromotionandDrifts 21 2.1.1 Gyromotion 21 2.1.2 E B Drift 24 2.1.3 Grad-B Drift 25 2.1.4 PolarizationDrift 27 2.1.5 CurvatureDrift 28 2.2 ConstantsoftheMotion 31 2.2.1 Magnetic Moment 31 2.2.2 Second Adiabatic Invariant 32 2.2.3 Canonical Angular Momentum 34 2.3 Diamagnetism* 36 3 Magnetic Confinement 41 3.1 Confinement in Mirror Fields 41 3.1.1 SimpleMirror 41 3.1.2 Tandem Mirrors* 46 3.2 Closed Toroidal Confinement Systems 49 3.2.1 Confinement 49 3.2.2 Flux Surfaces 53 3.2.3 Trapped Particles 55 3.2.4 TransportLosses 59 4 Kinetic Theory 65 4.1 BoltzmannandVlasovEquations 66 4.2 DriftKineticApproximation 66 4.3 Fokker–Planck Theory of Collisions 69 4.4 PlasmaResistivity 76 4.5 Coulomb Collisional Energy Transfer 78 4.6 Krook Collision Operators 82 5 Fluid Theory 85 5.1 MomentsEquations 85 5.2 One-Fluid Model 89 5.3 Magnetohydrodynamic Model 93 5.4 Anisotropic Pressure Tensor Model* 96 5.5 Strong Field, Transport Time Scale Ordering 98 6 Plasma Equilibria 103 6.1 General Properties 103 6.2 Axisymmetric Toroidal Equilibria 105 6.3 Large Aspect Ratio Tokamak Equilibria 111 6.4 SafetyFactor 116 6.5 Shafranov Shift* 120 6.6 Beta 123 6.7 Magnetic Field DiffusionandFluxSurfaceEvolution* 125 6.8 Anisotropic Pressure Equilibria* 128 7 Waves 131 7.1 Waves in an Unmagnetized Plasma 131 7.1.1 Electromagnetic Waves 131 7.1.2 Ion Sound Waves 133 7.2 Waves in a Uniformly Magnetized Plasma 134 7.2.1 Electromagnetic Waves 134 7.2.2 Shear Alfven Wave 137 7.3 Langmuir Waves and Landau Damping 139 7.4 Vlasov Theory of Plasma Waves* 142 7.5 ElectrostaticWaves* 148 8 Instabilities 155 8.1 Hydromagnetic Instabilities 158 8.1.1 MHD Theory 159 8.1.2 Chew–Goldberger–Low Theory 160 8.1.3 Guiding Center Theory 162 8.2 EnergyPrinciple 165 8.3 Pinch and Kink Instabilities 169 8.4 Interchange (Flute) Instabilities 173 8.5 Ballooning Instabilities 179 8.6 Drift Wave Instabilities 183 8.7 Resistive Tearing Instabilities* 186 8.7.1 Slab Model 186 8.7.2 MHDRegions 187 8.7.3 Resistive Layer 189 8.7.4 Magnetic Islands 190 8.8 Kinetic Instabilities* 192 8.8.1 Electrostatic Instabilities 192 8.8.2 Collisionless Drift Waves 193 8.8.3 Electron Temperature Gradient Instabilities 195 8.8.4 Ion Temperature Gradient Instabilities 196 8.8.5 Loss–Cone and Drift–Cone Instabilities 197 8.9 Sawtooth Oscillations* 201 9 Neoclassical Transport 205 9.1 Collisional Transport Mechanisms 205 9.1.1 ParticleFluxes 205 9.1.2 HeatFluxes 207 9.1.3 MomentumFluxes 208 9.1.4 FrictionForce 210 9.1.5 ThermalForce 210 9.2 ClassicalTransport 212 9.3 Neoclassical Transport – Toroidal Effects in Fluid Theory 215 9.4 MultifluidTransportFormalism* 221 9.5 ClosureofFluidTransportEquations* 224 9.5.1 Kinetic Equations for Ion–Electron Plasma 224 9.5.2 TransportParameters 228 9.6 Neoclassical Transport – Trapped Particles 231 9.7 Chang–Hinton Ion Thermal Conductivity* 237 9.8 Extended Neoclassical Transport – Fluid Theory* 238 9.8.1 RadialElectricField 239 9.8.2 ToroidalRotation 240 9.8.3 TransportFluxes 240 9.9 ElectricalCurrents* 242 9.9.1 BootstrapCurrent 242 9.9.2 TotalCurrent 243 9.10OrbitDistortion 244 9.10.1 ToroidalElectricField–WarePinch 244 9.10.2 PotatoOrbits 245 9.10.3 Orbit Squeezing 246 9.11TransportinaPartiallyIonizedGas* 247 10 Plasma Rotation* 251 10.1 Neoclassical Viscosity 251 10.1.1 Rate-of-StrainTensorinToroidalGeometry 251 10.1.2 Viscous Stress Tensor 252 10.1.3 Toroidal Viscous Force 253 10.1.4 Parallel Viscous Force 257 10.1.5 Neoclassical Viscosity Coefficients 258 10.2RotationCalculations 260 10.2.1 PoloidalRotationandDensityAsymmetries 260 10.2.2 Radial Electric Field and Toroidal Rotation Velocities 262 10.3 Momentum Confinement Times 264 10.3.1 Theoretical 264 10.3.2 Experimental 265 11 Turbulent Transport 267 11.1ElectrostaticDriftWaves 267 11.1.1 General 267 11.1.2 IonTemperatureGradientDriftWaves 270 11.1.3 Quasilinear Transport Analysis 270 11.1.4 SaturatedFluctuationLevels 272 11.2 Magnetic Fluctuations 273 11.3 Candidate Microinstabilities 275 11.3.1 Drift Waves and ITG Modes 276 11.3.2 Trapped Ion Modes 276 11.3.3 Electron Temperature Gradient Modes 277 11.3.4 Resistive Ballooning Modes 277 11.3.5 Chaotic Magnetic Island Overlap 277 11.4Wave–WaveInteractions* 278 11.4.1 ModeCoupling 278 11.4.2 DirectInteractionApproximation 279 11.5 Drift Wave Eigenmodes* 280 11.6 Gyrokinetic and Gyrofluid Simulations 282 12 Heating and Current Drive 285 12.1 Inductive 285 12.2AdiabaticCompression* 288 12.3FastIons 291 12.3.1 NeutralBeamInjection 291 12.3.2 FastIonEnergyLoss 293 12.3.3 FastIonDistribution 296 12.3.4 NeutralBeamCurrentDrive 298 12.3.5 Toroidal Alfven Instabilities 299 12.4 Electromagnetic Waves 301 12.4.1 Wave Propagation 301 12.4.2 WaveHeatingPhysics 304 12.4.3 Ion Cyclotron Resonance Heating 308 12.4.4 Lower Hybrid Resonance Heating 309 12.4.5 Electron Cyclotron Resonance Heating 310 12.4.6 CurrentDrive 311 13 Plasma–Material Interaction 315 13.1 Sheath 315 13.2Recycling 318 13.3 Atomic and Molecular Processes 319 13.4Sputtering 324 13.5ImpurityRadiation 326 14 Divertors 331 14.1 Configuration, Nomenclature and Physical Processes 331 14.2 Simple Divertor Model 334 14.2.1 StripGeometry 334 14.2.2 RadialTransportandWidths 334 14.2.3 ParallelTransport 336 14.2.4 SolutionofPlasmaEquations 337 14.2.5 Two-Point Model 338 14.3DivertorOperatingRegimes 340 14.3.1 Sheath-Limited Regime 340 14.3.2 Detached Regime 341 14.3.3 HighRecyclingRegime 341 14.3.4 ParameterScaling 342 14.3.5 Experimental Results 343 14.4ImpurityRetention 343 14.5 Thermal Instability* 346 14.62DFluidPlasmaCalculation* 349 14.7Drifts* 351 14.7.1 BasicDriftsintheSOLandDivertor 351 14.7.2 Poloidal and Radial E B Drifts 352 14.8ThermoelectricCurrents* 354 14.8.1 Simple Current Model 354 14.8.2 RelaxationofSimplifyingAssumptions 356 14.9 Detachment 358 15 Plasma Edge 361 15.1H-ModeEdgeTransportBarrier 361 15.1.1 RelationofEdgeTransportandGradients 362 15.1.2 MHD Stability Constraints on Pedestal Gradients 364 15.1.3 RepresentationofMHDPressureGradientConstraint 368 15.1.4 Pedestal Widths 369 15.2 E B Shear Stabilization of Turbulence 371 15.2.1 E B Shear Stabilization Physics 372 15.2.2 Comparison with Experiment 374 15.2.3 Possible “Trigger” Mechanism for the L–H Transition 374 15.3 Thermal Instabilities 376 15.3.1 TemperaturePerturbationsinthePlasmaEdge 376 15.3.2 Coupled Two-Dimensional Density–Velocity–Temperature Perturbations 379 15.3.3 Spontaneous Edge Transport Barrier Formation 384 15.3.4 Consistency with Observed L–H Phenomena 389 15.4MARFEs 392 15.5RadiativeMantle 397 15.6 Edge Operation Boundaries 398 15.7 Ion Particle Transport in the Edge* 398 15.7.1 Generalized “Pinch-Diffusion” Particle Flux Relations 399 15.7.2 Density Gradient Scale Length 402 15.7.3 Edge Density, Temperature, Electric Field and Rotation Profiles 403 16 Neutral Particle Transport* 413 16.1 Fundamentals 413 16.1.1 1DBoltzmannTransportEquation 413 16.1.2 Legendre Polynomials 414 16.1.3 Charge Exchange Model 415 16.1.4 Elastic Scattering Model 416 16.1.5 Recombination Model 419 16.1.6 First Collision Source 419 16.2 P N Transport and Diffusion Theory 421 16.2.1 P N Equations 421 16.2.2 Extended Diffusion Theories 424 16.3 Multidimensional Neutral Transport 428 16.3.1 FormulationofTransportEquation 428 16.3.2 Boundary Conditions 430 16.3.3 Scalar Flux and Current 430 16.3.4 PartialCurrents 432 16.4 Integral Transport Theory 432 16.4.1 Isotropic Point Source 433 16.4.2 Isotropic Plane Source 434 16.4.3 Anisotropic Plane Source 435 16.4.4 Transmission and Probabilities 437 16.4.5 Escape Probability 437 16.4.6 Inclusion of Isotropic Scattering and Charge Exchange 438 16.4.7 Distributed Volumetric Sources in Arbitrary Geometry 439 16.4.8 Flux from a Line Isotropic Source 439 16.4.9 Bickley Functions 440 16.4.10 Probability of Traveling a Distance t from a Line, Isotropic Source without a Collision 441 16.5 Collision Probability Methods 442 16.5.1 Reciprocity among Transmission and Collision Probabilities 442 16.5.2 Collision Probabilities for Slab Geometry 443 16.5.3 Collision Probabilities in Two-Dimensional Geometry 443 16.6 Interface Current Balance Methods 445 16.6.1 Formulation 445 16.6.2 Transmission and Escape Probabilities 445 16.6.3 2D Transmission/Escape Probabilities (TEP) Method 447 16.6.4 1DSlabMethod 452 16.7 Discrete Ordinates Methods 453 16.7.1 P L and D–P L Ordinates 454 16.8 Monte Carlo Methods 456 16.8.1 Probability Distribution Functions 456 16.8.2 AnalogSimulationofNeutralParticleTransport 457 16.8.3 StatisticalEstimation 459 16.9 Navier–Stokes Fluid Model 460 17 Power Balance 463 17.1 Energy Confinement Time 463 17.1.1 Definition 463 17.1.2 Experimental Energy Confinement Times 464 17.1.3 EmpiricalCorrelations 465 17.2Radiation 468 17.2.1 RadiationFields 468 17.2.2 Bremsstrahlung 470 17.2.3 CyclotronRadiation 471 17.3 Impurities 473 17.4 Burning Plasma Dynamics 475 18 Operational Limits 479 18.1Disruptions 479 18.1.1 PhysicsofDisruptions 479 18.1.2 CausesofDisruptions 481 18.2DisruptionDensityLimit 481 18.2.1 Radial Temperature Instabilities 483 18.2.2 SpatialAveraging 485 18.2.3 Coupled Radial Temperature–Density Instabilities 487 18.3 Nondisruptive Density Limits 490 18.3.1 MARFEs 490 18.3.2 Confinement Degradation 491 18.3.3 ThermalCollapseofDivertorPlasma 494 18.4EmpiricalDensityLimit 495 18.5 MHD Instability Limits 495 18.5.1 ˇ-Limits 495 18.5.2 Kink Mode Limits on q.a/=q.0/ 498 19 Fusion Reactors and Neutron Sources 501 19.1 Plasma Physics and Engineering Constraints 501 19.1.1 Confinement 501 19.1.2 DensityLimit 502 19.1.3 Beta Limit 503 19.1.4 Kink Stability Limit 504 19.1.5 Start-Up Inductive Volt-Seconds 504 19.1.6 Noninductive Current Drive 505 19.1.7 BootstrapCurrent 506 19.1.8 Toroidal Field Magnets 506 19.1.9 BlanketandShield 507 19.1.10 Plasma Facing Component Heat Fluxes 507 19.1.11 Radiation Damage to Plasma Facing Components 510 19.2 International Tokamak Program 511 19.2.1 Advanced Tokamak 514 19.3 Neutron Sources 515 Appendices A Frequently Used Physical Constants 521 B DimensionsandUnits 523 c VectorCalculus 527 d Curvilinear Coordinates 529 E PlasmaFormulas 537 F Further Reading 539 G Attributions 543 Subject Index 549

Reviews

Author Information

Professor Stacey received his PhD in Nuclear Engineering from the Massachusetts Institute of Technology in 1966. He then worked in naval reactor design at Knolls Atomic Power Laboratory and led the fast reactor theory and computations and the fusion research programs at Argonne National Laboratory. In 1977, he became Callaway Professor of Nuclear Engineering at the Georgia Institute of Technology, where he has been teaching and performing research in reactor physics and plasma physics. He is the author of six books and about 250 research papers. He led the international INTOR Workshop which defined the design features and R&D needs for the first fusion experimental reactor, for which he received the US Dept. of Energy Distinguished Associate Award. Professor Stacey is a Fellow of the American Nuclear Society and of the American Physical Society and is the recipient of, among other awards, the Seaborg Award for Nuclear Research and the Wigner Reactor Physics Award from the American Nuclear Society.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List