Field and Wave Electromagnetics

Author:   David Cheng ,  David Cheng
Publisher:   Pearson Education (US)
Edition:   2nd edition
Volume:   0000
ISBN:  

9780201128192


Pages:   720
Publication Date:   01 January 1989
Replaced By:   9781292026565
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $346.95 Quantity:  
Add to Cart

Share |

Field and Wave Electromagnetics


Add your own review!

Overview

Full Product Details

Author:   David Cheng ,  David Cheng
Publisher:   Pearson Education (US)
Imprint:   Pearson
Edition:   2nd edition
Volume:   0000
Dimensions:   Width: 19.60cm , Height: 3.10cm , Length: 23.90cm
Weight:   1.250kg
ISBN:  

9780201128192


ISBN 10:   0201128195
Pages:   720
Publication Date:   01 January 1989
Audience:   College/higher education ,  Tertiary & Higher Education
Replaced By:   9781292026565
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. The Electromagnetic Model. Introduction. The Electromagnetic Model. Si Units and Universal Constants. Review Questions. 2. Vector Analysis. Introduction. Vector Addition and Subtraction. Products of Vectors. Orthogonal Coordinate Systems. Integrals Containing Vector Functions. Gradient of a Scalar Field. Divergence of a Vector Field. Divergence Theorem. Curl of a Vector Field. Stoke's Theorem. Two Null Identities. Helmholtz's Theorem. Review Questions. Problems. 3. Static Electric Fields. Introduction. Fundamental Postulates of Electrostatics in Free Space. Coulomb's Law. Gauss's Law and Applications. Electric Potential. Conductors in Static Electric Field. Dielectrics in Static Electric Field. Electric Flux Density and Dielectric Constant. Boundary Conditions for Electrostatic Fields. Capacitances and Capacitors. Electrostatic Energy and Forces. Solution of Electrostatic Boundary-Value Problems. Review Questions. Problems. 4. Solution of Electrostatic Problems. Introduction. Poisson's and Laplaces' Equations. Uniqueness of Electrostatic Functions. Method of Images. Boundary-Value Problems in Cartesian Coordinates. Boundary-Value Problems in Cylindrical Coordinates. Boundary-Value Problems in Spherical Coordinates. Review Questions. Problems. 5. Steady Electric Currents. Introduction. Current Density and Ohm's Law. Electromotive Force and Kirchoff's Voltage Law. Equation of Continuity and Kirchoff's Current Law. Power Dissipation and Joule's Law. Boundary Conditions for Current Density. Resistance Calculations. Review Questions. Problems. 6. Static Magnetic Fields. Introduction. Fundamental Postulates of Magnetostatics in Free Space. Vector Magnetic Potential. The Biot-Savart Law and Applications. The Magnetic Dipole. Magnetization and Equivalent Current Densities. Magnetic Field Intensity and Relative Permeability. Magnetic Circuits. Behavior of Magnetic Materials. Boundary Conditions for Magnetostatic Fields. Inductances and Inductors. Magnetic Energy. Magnetic Forces and Torques. Review Questions. Problems. 7. Time-Varying Fields and Maxwell's Equations. Introduction. Faraday's Law of Electromagnetic Induction. Maxwell's Equations. Potential Functions. Electromagnetic Boundary Conditions. Wave Equations and their Solutions. Time-Harmonic Fields. Review Questions. Problems. 8. Plane Electromagnetic Waves. Introduction. Plane Waves in Lossless Media. Plane Waves in Lossy Media. Group Velocity. Flow of Electromagentic Power and the Poynting Vector. Normal Incidence of Plane Waves at a Plane Conducting Boundary. Oblique Incidence of Plane Waves at a Plane Conducting Boundary. Normal Incidence of Plane Waves at a Plane Dielectric Boundary. Normal Incidence of Plane Waves at Multiple Dielectric Interfaces. Oblique Incidence of Plane Waves at a Plane Dielectric Boundary. Review Questions. Problems. 9. Theory and Application of Transmission Lines Introduction. Transverse Electromagnetic Wave Along a Parallel-Plate. Transmission Line General Transmission-Line Equations. Wave Characteristics on Finite Transmission Lines. Transients on Transmission Lines. The Smith Chart. Transmission-Line Impedance Matching. Review Questions. Problems. 10. Waveguides and Cavity Resonators. Introduction. General Wave Behaviors Along Uniform Guiding Structures. Parallel-Plate Waveguide. Rectangular Waveguides. Circular Waveguides. Dielectric Waveguides. Cavity Resonators. Review Questions. Problems. 11. Antennas and Radiating Systems. Introduction. Radiation Fields of Elemental Dipoles. Antenna Patterns and Antenna Parameters. Thin Linear Antennas. Antenna Arrays. Receiving Antennas. Transmit-Receive Systems. Some Other Antenna Types. Review Questions. Problems. Appendix A: Symbols and Units. Appendix B: Some Useful Material Constants. Bibliography. Answers to Selected Problems. Index. Back Endpapers.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List