Dynamics and Relativity

Author:   Jeffrey Forshaw (University of Manchester, UK) ,  Gavin Smith (University of Manchester, UK)
Publisher:   John Wiley & Sons Inc
ISBN:  

9780470014592


Pages:   338
Publication Date:   13 February 2009
Format:   Hardback
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Our Price $269.95 Quantity:  
Add to Cart

Share |

Dynamics and Relativity


Add your own review!

Overview

Full Product Details

Author:   Jeffrey Forshaw (University of Manchester, UK) ,  Gavin Smith (University of Manchester, UK)
Publisher:   John Wiley & Sons Inc
Imprint:   John Wiley & Sons Inc
Dimensions:   Width: 17.50cm , Height: 2.30cm , Length: 25.20cm
Weight:   0.712kg
ISBN:  

9780470014592


ISBN 10:   0470014598
Pages:   338
Publication Date:   13 February 2009
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Out of Print
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Table of Contents

Preface. I. INTRODUCTORY DYNAMICS. 1. SPACE, TIME AND MOTION. 1.1 Defining Space and Time. 1.2 Vectors and Co-ordinate Systems. 1.3 Velocity and Acceleration. 1.4 Standards and Units. 2. FORCE, MOMENTUM AND NEWTON’S LAWS. 2.1 Force and Static Equilibrium. 2.2 Force and Motion. 2.3 Applications of Newton’s Laws. 3. ENERGY. 3.1 Work, Power and Kinetic Energy. 3.2 Potential Energy. 3.3 Collisions. 3.4 Energy Conservation in Complex Systems. 4. ANGULAR MOMENTUM. 4.1 Angular Momentum of a Particle. 4.2 Conservation of Angular Momentum in Systems of Particles. 4.3 Angular Momentum and Rotation About a Fixed Axis. 4.4 Sliding and Rolling. 4.5 Angular Impulse and the Centre of Percussion. 4.6 Kinetic Energy of Rotation. II. INTRODUCTORY SPECIAL RELATIVITY. 5. THE NEED FOR A NEW THEORY OF SPACE AND TIME. 5.1 Space and Time Revisited. 5.2 Experimental Evidence. 5.3 Einstein’s Postulates. 6. RELATIVISTIC KINEMATICS. 6.1 Time Dilation, Length Contraction and Simultaneity. 6.2 Lorentz Transformations. 6.3 Velocity Transformations. 7. RELATIVISTIC ENERGY AND MOMENTUM. 7.1 Momentum and Energy. 7.2 Applications in Particle Physics. III ADVANCED DYNAMICS. 8. NON-INERTIAL FRAMES. 8.1 Linearly Accelerating Frames. 8.2 Rotating Frames. 9. GRAVITATION. 9.1 Newton’s Law of Gravity. 9.2 The Gravitational Potential. 9.3 Reduced Mass. 9.4 Motion in a central force. 9.5 Orbits. 10. RIGID BODY MOTION. 10.1 The angular momentum of a rigid body. 10.2 The moment of inertia tensor. 10.3 Principal axes. 10.4 Fixed-axis rotation in the lab frame. 10.5 Euler’s equations. 10.6 The free rotation of a symmetric top. 10.7 The stability of free rotation. 10.8 Gyroscopes. IV. ADVANCED SPECIAL RELATIVITY. 11. THE SYMMETRIES OF SPACE AND TIME. 11.1 Symmetry in Physics. 11.2 Lorentz Symmetry. 12. FOUR-VECTORS AND LORENTZ INVARIANTS. 12.1 The Velocity Four-vector. 12.2 The Wave Four-vector. 12.3 The Energy-momentum Four-vector. 12.4 Electric and Magnetic Fields. 13. SPACE-TIME DIAGRAMS AND CAUSALITY. 13.1 Relativity Preserves Causality. 13.2 An Alternative Approach. 14. ACCELERATION AND GENERAL RELATIVITY. 14.1 Acceleration in Special Relativity. 14.2 A glimpse of General Relativity. A DERIVING THE GEODESIC EQUATION. B SOLUTIONS TO PROBLEMS.

Reviews

'Dynamics and Relativity by Forshaw and Smith was the ideal book for the upper level course Physics from Newton to Einstein at Yale since it was thoroughly modern and extremely lucid. Its most admirable features are the countless solved examples that made it ideal for self-study and a very detailed and lucid introduction to relativity.' - Ramamurti Shankar, John Randolph Huffman Professor of Physics, Professor of Applied Physics, Yale University


'Dynamics and Relativity by Forshaw and Smith was the ideal book for the upper level course Physics from Newton to Einstein at Yale since it was thoroughly modern and extremely lucid. Its most admirable features are the countless solved examples that made it ideal for self-study and a very detailed and lucid introduction to relativity.' - Ramamurti Shankar, John Randolph Huffman Professor of Physics, Professor of Applied Physics, Yale University


Author Information

Dr Jeff Forshaw, Department of Physics & Astronomy, University of Manchester, Oxford Road, Manchester, UK. Dr Gavin Smith, Department of Physics & Astronomy, University of Manchester, Oxford Road, Manchester, UK.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List