Device Architecture and Materials for Organic Light-Emitting Devices: Targeting High Current Densities and Control of the Triplet Concentration

Author:   Sarah Schols
Publisher:   Springer
Edition:   2011 ed.
ISBN:  

9789400794030


Pages:   154
Publication Date:   16 October 2014
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $206.97 Quantity:  
Add to Cart

Share |

Device Architecture and Materials for Organic Light-Emitting Devices: Targeting High Current Densities and Control of the Triplet Concentration


Add your own review!

Overview

Device Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 µs can be applied to this structure without affecting the light intensity, suggesting that pulsed excitation might be useful to reduce the accumulation of triplets in the device. The combination of all these properties makes the OLED with field-effect electron transport particularly interesting for waveguide devices and future electrically pumped lasers. In addition, triplet-emitter doped organic materials, as well as the use of triplet scavengers in conjugated polymers are investigated.

Full Product Details

Author:   Sarah Schols
Publisher:   Springer
Imprint:   Springer
Edition:   2011 ed.
Dimensions:   Width: 15.50cm , Height: 0.90cm , Length: 23.50cm
Weight:   0.454kg
ISBN:  

9789400794030


ISBN 10:   9400794037
Pages:   154
Publication Date:   16 October 2014
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

List of symbols and abbreviations. 1. Introduction.- 2. Materials and experimental techniques.- 3. OLEDs with field-effect electron transport.- 4. Devices based on diperfluorohexyl-quaterthiophene derivatives.- 5. Control of the triplet concentration.- 6. Triplet-emitter doped organic materials.- 7. Value of OLEDs with field-effect electron transport for lasing.- Bibliography.

Reviews

Author Information

Sarah Schols was born on May 6, 1981, in Brugge, Belgium. She received her Master of Applied Science degree in electrical engineering (option nanotechnology) in July 2004 at the Katholieke Universiteit Leuven in Belgium. The topic of her master thesis was the fabrication of organic solar cells based on discotic liquid crystals. Inspired by the challenges in organic electronics, she started her doctoral research in October 2004 at the Interuniversity Microelectronics Center (imec) to pursue her PhD degree at the Department of Electrical Engineering (ESAT) of the Katholieke Universiteit Leuven. Her doctoral research was funded by the Belgian Fund for Scientific Research (FWO) and focused on the design of new device architectures and material concepts for organic light-emitting devices. Currently, she is a Senior Researcher in the Large Area Electronics Department of imec.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List