Developing Enterprise Chatbots: Learning Linguistic Structures

Author:   Boris Galitsky
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2019
ISBN:  

9783030042981


Pages:   559
Publication Date:   17 April 2019
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $155.22 Quantity:  
Add to Cart

Share |

Developing Enterprise Chatbots: Learning Linguistic Structures


Add your own review!

Overview

A chatbot is expected to be capable of supporting a cohesive and coherent conversation and be knowledgeable, which makes it one of the most complex intelligent systems being designed nowadays. Designers have to learn to combine intuitive, explainable language understanding and reasoning approaches with high-performance statistical and deep learning technologies. Today, there are two popular paradigms for chatbot construction: 1. Build a bot platform with universal NLP and ML capabilities so that a bot developer for a particular enterprise, not being an expert, can populate it with training data; 2. Accumulate a huge set of training dialogue data, feed it to a deep learning network and expect the trained chatbot to automatically learn how to chat . Although these two approaches are reported to imitate some intelligent dialogues, both of them are unsuitable for enterprise chatbots, being unreliable and too brittle. The latter approach is based on a belief that some learning miracle will happen and a chatbot will start functioning without a thorough feature and domain engineering by an expert and interpretable dialogue management algorithms. Enterprise high-performance chatbots with extensive domain knowledge require a mix of statistical, inductive, deep machine learning and learning from the web, syntactic, semantic and discourse NLP, ontology-based reasoning and a state machine to control a dialogue. This book will provide a comprehensive source of algorithms and architectures for building chatbots for various domains based on the recent trends in computational linguistics and machine learning. The foci of this book are applications of discourse analysis in text relevant assessment, dialogue management and content generation, which help to overcome the limitations of platform-based and data driven-based approaches. Supplementary material and code is available at https://github.com/bgalitsky/relevance-based-on-parse-trees

Full Product Details

Author:   Boris Galitsky
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2019
Weight:   1.021kg
ISBN:  

9783030042981


ISBN 10:   3030042987
Pages:   559
Publication Date:   17 April 2019
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

Author Information

Dr. Boris Galitsky has contributed linguistic and machine learning technologies to Silicon Valley startups for the last 25 years, as well as eBay and Oracle, where he is currently an architect of a digital assistant project. An author of two computer science books, 150+ publications and 15+ patents, he is now researching how discourse analysis improves search relevance and supports dialogue management. In his previous book, Dr. Galitsky presented a foundation of autistic reasoning which shed a light on how chatbots should facilitate conversations. Boris is an Apache committer to OpenNLP where he created the OpenNLP.Similarity component that is a basis for chatbot development.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Shopping Cart
Your cart is empty
Shopping cart
Mailing List