|
|
|||
|
||||
OverviewSatellites are the only major Air Force systems with no maintenance, routine repair, or upgrade capability. The result is expensive satellites and a heavy reliance on access to space. At the same time, satellite design is maturing and reducing the cost to produce satellites with longer design lives. This works against the ability to keep the technology on satellites current without frequent replacement of those satellites. The Global Positioning System Joint Program Office realizes that it must change its mode of operations to quickly meet new requirements while minimizing cost. The possibility of using robotic servicing architectures to solve these problems is considered in this thesis. The authors accomplished this through a systems engineering and decision analysis approach in which a number of different alternatives for on-orbit satellite repair and upgrade were analyzed. This approach involved defining the problem framework and desired user benefits, then developing different system architectures and determining their performance with regard to the specified benefits. Finally, the authors used decision analysis to evaluate the alternative architectures in the context of the user's goals. The results indicate favorable benefit-to-cost relationships for on-orbit servicing architectures as compared to the current mode of operation. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant. Full Product DetailsAuthor: Gregg A Leisman , Adam D WallenPublisher: Hutson Street Press Imprint: Hutson Street Press Dimensions: Width: 15.60cm , Height: 1.60cm , Length: 23.40cm Weight: 0.422kg ISBN: 9781025088990ISBN 10: 1025088999 Pages: 298 Publication Date: 22 May 2025 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||