Decarbonization of Copper Production by Optimal Demand Response and Power-to-Hydrogen

Author:   Dr Fritz Thomas Carl Röben, Ph.D.
Publisher:   Verlag G. Mainz
ISBN:  

9783958864580


Pages:   221
Publication Date:   11 October 2022
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $113.82 Quantity:  
Add to Cart

Share |

Decarbonization of Copper Production by Optimal Demand Response and Power-to-Hydrogen


Add your own review!

Overview

To avoid greenhouse gas (GHG) emissions and mitigate climate change, low-carbon technologies must be used to provide renewable energy and replace fossil fuels. However, this system transition is very material-intensive and leads to high demand for critical materials. Copper is such a material that is essential for electrical applications and many low-carbon technologies. The production of copper itself is an energyintensive process. Thus, two challenges arise that are addressed in this thesis: the flexible process operation in a fluctuating renewable energy system and the avoidance of process-based GHG emissions. The flexible operation of electricity-intensive processes can support the power grid and provide economic benefits. Demand response (DR) describes operational adjustments based on an economic incentive, such as fluctuating electricity prices. Our initial analysis shows a large DR potential of two electricity-intensive process steps in copper production. To consider the DR potential of the entire production process and to capture the dependencies of the many process steps, we formulate a detailed scheduling model of a representative copper production process. The developed mixed-integer linear program (MILP) allows minimizing the electricity costs without reducing the production volume. This process-wide scheduling enables significant DR potential, reducing annual electricity costs by up to 14.2% and shifting large parts of the electricity demand. Avoiding process-based GHG emissions is challenging because fossil fuels are hard to substitute in some processes. These processes use fossil fuels as high-temperature process heat and as chemical reducing agents. A promising alternative for these use cases is hydrogen (H2), when H2 is produced from renewable electricity using water electrolysis (Power-to-H2). The oxygen produced as a by-product offers further benefits as it can be utilized in copper production. To optimally design a power-to-H2 system, we formulate a MILP that minimizes the total annualized cost. The resulting CO2 abatement costs are 201EUR/t CO2-eq, which exceeds the current prices of EU allowances. However, a sensitivity analysis shows great potential through further development of water electrolysis. Decarbonization through Power-to-H2 offers additional DR potential. Our scheduling model of the decarbonized copper production shows that DR strongly contributes to low CO2 abatement costs. Consequently, this work identifies the potential of decarbonized copper production that provides a critical material for low-carbon technologies and supports the power grid through DR.

Full Product Details

Author:   Dr Fritz Thomas Carl Röben, Ph.D.
Publisher:   Verlag G. Mainz
Imprint:   Verlag G. Mainz
Weight:   0.302kg
ISBN:  

9783958864580


ISBN 10:   3958864589
Pages:   221
Publication Date:   11 October 2022
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List