Data Analysis Techniques for Physical Scientists

Author:   Claude A. Pruneau (Wayne State University, Michigan)
Publisher:   Cambridge University Press
Edition:   New edition
ISBN:  

9781108416788


Pages:   716
Publication Date:   05 October 2017
Format:   Hardback
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $214.74 Quantity:  
Add to Cart

Share |

Data Analysis Techniques for Physical Scientists


Add your own review!

Overview

Full Product Details

Author:   Claude A. Pruneau (Wayne State University, Michigan)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press
Edition:   New edition
Dimensions:   Width: 19.30cm , Height: 3.50cm , Length: 25.30cm
Weight:   1.700kg
ISBN:  

9781108416788


ISBN 10:   1108416780
Pages:   716
Publication Date:   05 October 2017
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

'This ambitious book provides a comprehensive, rigorous, and accessible introduction to data analysis for nuclear and particle physicists working on collider experiments, and outlines the concepts and techniques needed to carry out forefront research with modern collider data in a clear and pedagogical way. The topic of particle correlation functions, a seemingly straightforward topic with conceptual pitfalls awaiting the unaware, receives two full chapters. Professor Pruneau presents these concepts carefully and systematically, with precise definitions and extensive discussion of interpretation. These chapters should be required reading for all practitioners working in this area.' Peter Jacobs, Lawrence Berkeley National Laboratory 'The techniques described in this textbook on correlation functions, and on efficiency and acceptance of an experimental apparatus, are key to understanding the approach used in many contemporary large-scale experiments; they are relevant for theoretical and experimental researchers alike, both in nuclear and particle physics and in many other areas where large data volumes and multi-dimensional data are investigated. I consider this an important and unique addition to the current literature on the subject.' Peter Braun-Munzinger, GSI Helmholtzzentrum fur Schwerionenforschung, Germany 'This text is a very welcome addition to the books available in the area. It provides concise and eminently readable information on probability and statistics but also deals in quite some detail with many of the techniques used currently in running high-energy and nuclear physics experiments but not covered in standard texts. A case in point is the beautiful expose on Kalman filtering, and the sections which deal with particle identification techniques. Presented so that theoretical researchers can get much-needed information on how data analysis works in such environments, the text is also very well suited to all students of experimental physics, and is particularly interesting for students and more senior researchers alike who have specialized in large nuclear and particle physics experiments.' Johanna Stachel, University of Heidelberg 'Data Analysis Techniques for Physical Scientists is both monumental and accessible. While targeted towards data analysis methods in nuclear and particle physics, its breadth and depth insure that it will be of interest to a much broader audience across the physical sciences. Designed as a textbook, with ample problems and expository text, this wonderful new addition to the literature is also suitable for self-study and as a reference. As such, it is the book that I will first recommend to my students, be they undergraduates or graduate students.' W. A. Zajc, Columbia University, New York 'The text is clearly written, and the book is well laid out with numerous useful illustrations. For its target audience, this is an excellent book.' A. H. Harker, Contemporary Physics


Advance praise: 'This ambitious book provides a comprehensive, rigorous, and accessible introduction to data analysis for nuclear and particle physicists working on collider experiments, and outlines the concepts and techniques needed to carry out forefront research with modern collider data in a clear and pedagogical way. The topic of particle correlation functions, a seemingly straightforward topic with conceptual pitfalls awaiting the unaware, receives two full chapters. Professor Pruneau presents these concepts carefully and systematically, with precise definitions and extensive discussion of interpretation. These chapters should be required reading for all practitioners working in this area.' Peter Jacobs, Lawrence Berkeley National Laboratory Advance praise: 'The techniques described in this textbook on correlation functions, and on efficiency and acceptance of an experimental apparatus, are key to understanding the approach used in many contemporary large-scale experiments; they are relevant for theoretical and experimental researchers alike, both in nuclear and particle physics and in many other areas where large data volumes and multi-dimensional data are investigated. I consider this an important and unique addition to the current literature on the subject.' Peter Braun-Munzinger, GSI Helmholtzzentrum fur Schwerionenforschung, Germany Advance praise: 'This text is a very welcome addition to the books available in the area. It provides concise and eminently readable information on probability and statistics but also deals in quite some detail with many of the techniques used currently in running high-energy and nuclear physics experiments but not covered in standard texts. A case in point is the beautiful expose on Kalman filtering, and the sections which deal with particle identification techniques. Presented so that theoretical researchers can get much-needed information on how data analysis works in such environments, the text is also very well suited to all students of experimental physics, and is particularly interesting for students and more senior researchers alike who have specialized in large nuclear and particle physics experiments.' Johanna Stachel, University of Heidelberg Advance praise: 'Data Analysis Techniques for Physical Scientists is both monumental and accessible. While targeted towards data analysis methods in nuclear and particle physics, its breadth and depth insure that it will be of interest to a much broader audience across the physical sciences. Designed as a textbook, with ample problems and expository text, this wonderful new addition to the literature is also suitable for self-study and as a reference. As such, it is the book that I will first recommend to my students, be they undergraduates or graduate students.' W. A. Zajc, Columbia University


Author Information

Claude A. Pruneau is a Professor of Physics at the Wayne State University, Michigan, from where he received the 2006 Excellence in Teaching Presidential Award. He is also a member of the ALICE collaboration, and conducts an active research program in the study of the Quark Gluon Plasma produced in relativistic heavy ion collisions at the CERN Large Hadron Collider. He has worked as a Research Fellow at both Atomic Energy for Canada Limited and McGill University, Canada, and is a member of the American Physical Society, Canadian Association of Physicists and the Union of Concerned Scientists.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List