Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells

Author:   F.J. Alvarez-Leefmans ,  John M. Russell
Publisher:   Springer Science+Business Media
Edition:   1990 ed.
ISBN:  

9780306434266


Pages:   426
Publication Date:   31 May 1990
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $644.16 Quantity:  
Add to Cart

Share |

Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells


Add your own review!

Overview

This is a book about how Cl- crosses the cell membranes of nerve, muscle, and glial cells. Not so very many years ago, a pamphlet rather than book might have resulted from such an endeavor! One might ask why Cl-, the most abundant biological anion, attracted so little attention from investigators. The main reason was that the prevailing paradigm for cellular ion homeostasis in the 1950s and 1960s assigned Cl- a ther­ modynamically passive and unspecialized role. This view was particularly prominent among muscle and neuroscience investigators. In searching for reasons for such a negative (no pun intended) viewpoint, it seems to us that it stemmed from two key experimental observations. First, work on frog skeletal muscle showed that Cl- was passively distributed between the cytoplasm and the extracellular fluid. Second, work on Cl- transport in red blood cells confirmed that the Cl- transmembrane distribution was thermodynamically passive and, in addition, showed that Cl- crossed the mem­ brane extremely rapidly. This latter finding [for a long time interpreted as being the result of a high passive chloride electrical permeability(? CI)] made it quite likely that Cl- would remain at thermodynamic equilibrium. These two observations were gener­ alized and virtually all cells were thought to have a very high P Cl and a ther­ modynamically passive Cl- transmembrane distribution. These concepts can still be found in some physiology and neuroscience textbooks.

Full Product Details

Author:   F.J. Alvarez-Leefmans ,  John M. Russell
Publisher:   Springer Science+Business Media
Imprint:   Kluwer Academic/Plenum Publishers
Edition:   1990 ed.
Dimensions:   Width: 17.80cm , Height: 2.50cm , Length: 25.40cm
Weight:   2.350kg
ISBN:  

9780306434266


ISBN 10:   0306434261
Pages:   426
Publication Date:   31 May 1990
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. Methods for Measuring Chloride Transport across Nerve, Muscle, and Glial Cells.- 2. Principles of Cell Volume Regulation: Ion Flux Pathways and the Roles of Anions.- 3. Chloride Transport in the Squid Giant Axon.- 4. Intracellular Cl? Regulation and Synaptic Inhibition in Vertebrate and Invertebrate Neurons.- 5. Chloride Transport across Glial Membranes.- 6. Chloride Channels and Carriers in Cultured Glial Cells.- 7. Chloride Transport across the Sarcolemma of Vertebrate Smooth and Skeletal Muscle.- 8. Biophysical Aspects of GABA- and Glycine-Gated Cl? Channels in Mouse Cultured Spinal Neurons.- 9. GABA-Gated Cl? Currents and Their Regulation by Intracellular Free Ca2+.- 10. Pharmacology and Physiology of Cl? Conductances Activated by GABA in Cultured Mammalian Central Neurons.- 11. Acetylcholine-Activated Cl? Channels in Molluscan Nerve Cells.- 12. GABA-Activated Bicarbonate Conductance: Influence on EGABA and on Postsynaptic pH Regulation.- 13. Calcium-Dependent Chloride Currents in Vertebrate Central Neurons.- 14. Hyperpolarization-Activated Chloride Channels in Aplysia Neurons.- 15. The Voltage-Dependent Chloride Channel of Torpedo Electroplax: Intimations of Molecular Structure from Quirks of Single-Channel Function.- 16. Chloride Channels in Skeletal Muscle.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List