Cell Physiology Source Book

Author:   F. Javier Alvarez-Leefmans, MD, PhD (Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, USA) ,  Eric Delpire (Vanderbilt University, Nashville, Tennessee, USA) ,  Edna Kaneshiro (Distinguished Research Professor, Department of Biology, University of Cincinnati, USA)
Publisher:   Elsevier Science Publishing Co Inc
Edition:   5th edition
ISBN:  

9780128111147


Pages:   1025
Publication Date:   01 December 2023
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $514.80 Quantity:  
Add to Cart

Share |

Cell Physiology Source Book


Add your own review!

Overview

Full Product Details

Author:   F. Javier Alvarez-Leefmans, MD, PhD (Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, USA) ,  Eric Delpire (Vanderbilt University, Nashville, Tennessee, USA) ,  Edna Kaneshiro (Distinguished Research Professor, Department of Biology, University of Cincinnati, USA)
Publisher:   Elsevier Science Publishing Co Inc
Imprint:   Academic Press Inc
Edition:   5th edition
ISBN:  

9780128111147


ISBN 10:   0128111143
Pages:   1025
Publication Date:   01 December 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Research Interests Research in his laboratory focuses on the molecular and cellular physiology of carrier protein molecules that actively transport chloride ions (Cl-) across the plasma membrane of neurons and epithelial cells. Specifically, they study some members of the cation-coupled-chloride contransporter gene/protein family SLC12A: the Na+, K+, 2 Cl- cotransporters (NKCC1 and NKCC2) and the K+-Cl- cotransporters (KCC1, 2, 3 and 4). These carrier proteins play key roles in: intracellular Cl- homeostasis in neurons, GABA- and glycine-mediated synaptic signaling, neuronal development, sensory transduction including nociception, transepithelial salt transport, cell water volume control, and extracellular K+ scavenging. Not surprisingly, altered function of these proteins underlies several pathologies and hence they have become significant targets for therapeutic interventions and translational research. To study the function of these proteins we use state-of-the-art live-cell imaging microscopy and fluorescent probes for measuring and manipulating intracellular ions and water in dissociated neurons and epithelial cells. Some of these optical methods have been developed in their lab, and are used in conjunction with molecular methods, knockout models, and several microanatomical techniques. Their current research involves two projects: Mechanisms regulating intracellular chloride in primary afferent neurons and their impact on GABA-mediated presynaptic inhibition and sensory transduction. This project aims at understanding the molecular mechanisms that determine intracellular Cl- concentration in primary afferent neurons, their regulation, and the role they play in presynaptic inhibition, acute somatic pain, neurogenic inflammation and proprioception. Roles of cation-coupled-chloride contransporters of choroid plexus epithelial cells in the regulation of cerebrospinal fluid ion composition. The choroid plexus epithelial cells (CPECs) form the blood-cerebrospinal fluid (CSF) barrier. CPECs secrete CSF and regulate its electrolyte composition. Regulation of CSF ion levels is fundamental for maintaining normal brain function. The overarching goal of this project is to understand how NKCC1, KCCs and aquaporins control the ion composition of the cerebrospinal fluid. Current emphasis is on the molecular and cellular mechanisms used by CPECs to regulate and maintain the CSF K+ concentration, a fundamental problem of broad physiological significance. CSF composition has a major impact on the fluid microenvironment of neurons and glial cells, and vice versa. Extracellular K+ homeostasis is critical for normal brain function; small changes in extracellular K+ profoundly affect neuronal excitability and osmotic water balance of glial cells and neurons. Dr. Eric Delpire teaches at the Vanderbilt University, Nashville, USA Edna Kaneshiro is a distinguished research professor in the department of biology at the University of Cincinnati where she has been for 43 years. Dr. Kaneshiro’s research is on the lipids of eukaryote protists, including free living, parasitic, and opportunistic pathogens. Although work on a number of different protozoa is being performed, Kaneshiro’s current focus is on the AIDS-associated opportunistic infection caused by Pneumocystis carinii. This organism causes a type of pneumonia that can lead to the death of immunocompromised individuals. Pneumocystis proliferates extracellularly in the lung alveolus where lipids constitute a major part of lung surfactant. Thus, lipids are thought to be important to the nutrition, physiology and metabolism of the organism. The biosynthesis of pathogen-specific lipids represents potential targets for drug development. She also has an interest in the cell biology and life history of this poorly understood opportunistic infectious agent. Dr. Kaneshiro is an elected fellow of the American Association for the Advancement of Science and the American Academy of Microbiology

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List