|
|
|||
|
||||
OverviewA biosensor is a device in which a bioactive layer lies in direct contact with a transducer whose responses to change in the bioactive layer generate eloctronic signals for interpretation. The bioactive layer may consist of membrane-bound enzymes, anti-bodies, or receptors. The potential of this blend of electronics and biotechnology includes the direct assay of clinically important substrates (e.g. blood glucose) and of substances too unstable for storage or whose concentrations fluctuate rapidly. Written by the leading researchers in the field, this book reflects the most current developments in successfully constructing a biosensor. Major applications are in the fields of pharmacology, molecular biology, virology and electronics. Full Product DetailsAuthor: Victor C. Yang , That T. NgoPublisher: Springer Science+Business Media Imprint: Kluwer Academic/Plenum Publishers Edition: 2000 ed. Dimensions: Width: 17.80cm , Height: 3.00cm , Length: 25.40cm Weight: 2.100kg ISBN: 9780306460876ISBN 10: 0306460874 Pages: 360 Publication Date: 30 April 2000 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Biochromic Polydiacetylene Synthetic Membranes.- 1.1. Introduction.- 1.2 Assembling the System.- 1.3 Membranelike Structures in Biosensing.- 1.4 Sensors and Biosensors Based on Conjugated Polymers.- 1.4.1. Basic Properties.- 1.4.2. Conjugated Polymer-Based Sensors.- 1.4.3. Polydiacetylenes and Chromic Effects.- 1.4.4. PDA-Based Biosensors.- 1.5 Conclusion.- References.- 2. Analysis of the Kinetics of Antigen-Antibody Interactions and Fractal Dimension in Biosensors.- 2.1. Introduction.- 2.2. Theory.- 2.2.1. Single-Fractal Analysis.- 2.2.2. Dual-Fractal Analysis.- 2.3. Results.- 2.4. Conclusions.- References.- 3. Avidin-Biotin Mediated Biosensors.- 3.1. Introduction.- 3.2. Avidin-Biotin System.- 3.3. Immobilization of Enzymes Through Avidin-Biotin Complexation.- 3.4. Layer-by-Layer Structure of Enzyme Multilayers.- 3.5. Conclusions.- References.- 4. Layered Functionalized Electrodes for Electrochemical Biosensor Applications.- 4.1. Introduction.- 4.2. Monolayer Enzyme Electrodes.- 4.3. Electrical Contact of Monolayer and Multilayer Enzyme Electrodes.- 4.4. Electrically Contacted Reconstituted Enzyme Electrodes.- 4.5. Integrated Layered NAD(P)+-Dependent Enzyme Electrodes.- 4.6. Layered Antigen Monolayer Electrodes for Electrochemical Probing of Antigen—Antibody Interactions.- 4.7. Layered Photoisomerizable Antigen Monolayer Electrodes for Reversible Probing of Antigen—Antibody Interactions.- 4.8. Layered Oligonucleotide Electrodes for Electrochemical Probing of DNA.- 4.9. Conclusions and Perspectives.- References.- 5. Biosensors Based on “Wired” Peroxidases.- 5.1. Introduction.- 5.2. “Wiring” of Horseradish Peroxidase.- 5.3. Thermostable Soybean Peroxidase.- 5.4. Bienzyme Systems.- 5.5. Applications.- 5.5.1. NAD(P)H Sensing.- 5.5.2. Avidin and Biotin.-5.5.3. Oligonucleotide Sensing.- 5.5.4. Characterization of Electrodes Generating and Consuming H2O2.- 5.5.5. Organic-Phase Peroxide Sensors.- References.- 6. Nonseparation Electrochemical Enzyme Immunoassay Using Microporous Gold Electrodes.- 6.1. Introduction.- 6.2. Experimental.- 6.2.1. Apparatus.- 6.2.2. Reagents.- 6.2.3. Preparation of Microporous Gold Electrodes and Immobilization of Binding Proteins.- 6.2.4. Nonseparation Sandwich-Type Electrochemical Enzyme Immunoassays.- 6.2.5. Nonseparation Competitive Electrochemical Enzyme Binding/Immunoassay.- 6.3. Results and Discussion.- 6.3.1. Noncompetitive Electrochemical Enzyme Immunoassay for Proteins and Microorganisms.- 6.3.2. Competitive Electrochemical Enzyme Binding Assay for Small Molecules.- 6.4. Future Directions.- 6.5. Conclusions.- References.- 7. Liposomes as Signal-Enhancement Agents in Immunodiagnostic Applications.- 7.1. Introduction.- 7.2. Amplification of an Enzyme Immunoassay Using Liposomes.- 7.2.1. Preparation of Enzyme-and Antibody-Bearing Liposomes.- 7.2.2. Preparation of Enzyme—Antibody Conjugate.- 7.2.3. Characterization of Liposomes with Immobilized HRP and Antibody.- 7.2.4. Sandwich ELISA with Liposomes and Enzyme—Antibody Conjugate.- 7.2.5. Results and Discussion.- 7.3. Amplification of Fluoroimmunoassay Using Liposomes.- 7.3.1. Preparation of Antibody-Bearing Fluorescent Liposomes.- 7.3.2. Preparation of Fluor—Antibody Conjugate.- 7.3.3. Fluoroimmunoassay with Liposomes and Fluorescein—Antibody Conjugate.- 7.3.4. Results and Discussion.- 7.4. Application of Ganglioside-Bearing Liposomes as Sensitive Probes for Potent Neurotoxins.- 7.4.1. Preparation and Characterization of GT1b Liposomes.- 7.4.2. Fluoroimmunoassay with GT1b Liposomes.- 7.4.3. Results and Discussion.- 7.5.Conclusions.- References.- 8. Recent Development in Polymer Membrane-Based Potentiometric Polyion Sensors.- 8.1. Introduction.- 8.2. Development of Polymer Membrane-Based Polyion Sensors.- 8.2.1. Extraction Chemistry.- 8.2.2. Response Slope.- 8.3. Applications of Polyion Sensors.- 8.3.1. Measuring the Blood Heparin Levels.- 8.3.2. Probing Binding Reactions.- 8.3.3. Detecting Protease Activities.- 8.4. Conclusions.- References.- Piezoelectric Immunosensors: Theory and Applications.- 9.1. Introduction.- 9.2. Quartz Crystal Microbalance—Theory.- 9.3. Quartz Crystal Microbalance—Applications.- 9.3.1. Clinical Analysis.- 9.3.2. Environmental Analysis.- 9.3.3. Food Analysis.- 9.4. Quartz Crystal Microbalance—Commercial Sources.- 9.5. Quartz Crystal Microbalance—Conclusions and Future Directions.- References.- 10. Surface Photovoltage-Based Biosensor.- 10.1. Introduction.- 10.2. Measurement Principle.- 10.3. Enzyme Sensor.- 10.4. Surface Photovoltage Immunosensor.- 10.4.1. A Highly Sensitive Immunosensor.- 10.4.2. Sample Preparation and Measurement.- 10.5. Microbial Biological Oxygen Demand Sensor.- 10.5.1. Surface Photovoltage-Based Microbial Biological Oxygen Demand Sensor.- 10.5.2. Immobilization Method ofT. cutaneumon the Device.- 10.5.3. Optimization of the System.- 10.5.4. Comparison with BODSand BOD5.- 10.6. Conclusion.- References.- 11. Surface Plasmon Resonance Biosensors.- 11.1. Introduction.- 11.2. Related Techniques.- 11.3. Immobilization of Ligands.- 11.4. Qualitative Characterization of Molecular Interactions.- 11.5. Measurement of Analyte Concentration.- 11.6. Determination of Kinetic and Thermodynamic Interaction Constants.- 11.7. Nonexponential Binding Behavior.- 11.8. Consistency and Choice of the Right Model.- 11.9. Studying Interactions inSolution.- 11.10. Mass Transport Limitation.- 11.11. Conclusions.- References.- 12. Luminescent Biosensors.- 12.1. Introduction.- 12.2. Enzyme Reactions.- 12.2.1. Basic Reactions.- 12.2.2. Extension Through Oxidoreductases as Auxiliary Enzymes.- 12.3. Design of the Sensing Layer.- 12.3.1. Basic Procedures for Enzyme Immobilization.- 12.3.2. Coimmobilization of Multienzyme Systems on the Same Membrane.- 12.3.3. Compartmentalization.- 12.3.4. Cosubstrate Confinement.- 12.5. Sensor Design.- 12.6. Applications.- 12.6.1. Determination of Other Analytes with Auxiliary Enzymes..- 12.6.2. Stability.- 12.7. Conclusions and Trends.- References.- 13. Micromachining for Biosensors and Biosensing Systems.- 13.1. Introduction.- 13.2. Etching.- 13.2.1. Wet Etching.- 13.2.2. Dry Etching.- 13.3. Free-Standing Microstructure Fabrication.- 13.3.1. Surface Micromachining.- 13.3.2. Lost Wafer Process.- 13.4. High Aspect Ratio Microstructure Fabrication.- 13.4.1. LIGA.- 13.4.2. HEXSIL.- 13.5. Microchannel Fabrication.- 13.5.1. Application of Bulk Micromachining.- 13.5.2. Application of Surface Micromachining.- 13.6. Bonding.- 13.6.1. Gluing.- 13.6.2. Low-Temperature Glass Bonding.- 13.6.3. Eutectic Bonding.- 13.6.4. Fusion Bonding.- 13.6.5. HF Bonding.- 13.6.6. Anodic Bonding.- 13.7. Conclusion.- References.- 14. Simultaneous Determination of Glucose and Analogous Disaccharides by Dual-Electrode Enzyme Sensor System.- 14.1. Introduction.- 14.2. Dual-Electrode Enzyme Sensor System.- 14.2.1. Preparation of the Oxygen-Electrode-Based Sequence Electrode.- 14.2.2. Preparation of the Hydrogen-Peroxide-Electrode-Based Sequence Electrode.- 14.2.3. Preparation of the Carbon-Paste (CP)-Electrode-Based Sequence Electrode.- 14.2.4. Preparation of Disposable Sequence Electrode Strips.- 14.2.5. FIA Configuration and Measuring Procedure.- 14.3. Simultaneous Determination of Glucose and Sucrose.- 14.4. Simultaneous Determination of Glucose and Maltose.- 14.5. Simultaneous Determination of Glucose and Lactose.- 14.6. Discussion.- References.- 15. Application of Biosensors to the Measurement of Neurotransmitter Function.- 15.1. Introduction.- 15.2.In Vivo Microdialysis.- 15.2.1. The Microdialysis Probe.- 15.2.2. Factors Affecting in Vivo Microdialysis Measurements.- 15.3. Voltammetric Biosensors.- 15.3.1. Voltammetric Measurements.- 15.3.2. Electrodes.- 15.3.3. Detectable Compounds.- 15.3.4. Application.- 15.4. Antibody Microprobes.- 15.4.1. Probe Design.- 15.4.2. Experimental Use.- 15.5. Conclusions and the Future.- References.- 16. Biosensors for Agrochemicals.- 16.1. Introduction.- 16.2. Insecticides.- 16.2.1. Organophosphates, Carbamates, and Organochlorines.- 16.2.2. Pyrethroids Immunosensors.- 16.3. Herbicides.- 16.3.1. Triazines.- 16.3.2. Phenylacetic Acids.- 16.3.3. Substituted Ureas and Sulfonylureas.- 16.3.4. Imidazolinones.- 16.4. Fungicides.- 16.4.1. Dithiocarbamate Enzyme Sensor.- 16.4.2. Benzimidazole Immunosensor.- 16.5. Future Trends.- References.- 17. Thick-Film Biosensors.- 17.1. Introduction.- 17.2. Thick-Film Technology.- 17.2.1. Screen-Printing Technique.- 17.2.2. Materials.- 17.2.3. Trends.- 17.3. Applications.- References.- 18. Alternative Polymer Matrices for Potentiometric Chemical Sensors.- 18.1. Introduction.- 18.2. Sensor Membranes for All-Solid-State Electrodes.- 18.3. Silicone Rubber Matrix-Based ISE Membranes.- 18.3.1. One-Component Room Temperature Vulcanizing-Type Silicone Rubber (RTV-SR) Matrix.- 18.3.2. RTV-SR Membrane-Based Ion-Selective Electrodes.- 18.3.3. A pCO2Sensor with the Valinomycin-Based RTV-SR Membrane.- 18.4. Polyurethane-Based ISE Membranes.- 18.4.1. Polyurethane Matrix.- 18.4.2. Ion- and Biosensor Membranes Based on PU-Blended Matrices.- 18.4.3. Biocompatible ISE Membranes.- 18.5. Concluding Remarks.- References.- 19. Rapid Measurement of Biodegradable Substances in Water Using Novel Microbial Sensors.- 19.1. Introduction.- 19.2. Application of Microbial Sensors in Pollution Control.- 19.3. Prehydrolysis of Macromolecules.- 19.4. Effect of Salt on the Value of SensorBOD.- 19.5. Analysis of Wastewater from a University in Hong Kong.- 19.6. A Novel Approach Using the Salt-Tolerant Yeast Arxula.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |